当一条 sql 语句被 SparkSqlParser 解析为一个 unresolved logicalPlan 后,接下来就会使用 Analyzer 进行 resolve。所谓的 resolve 也就是在未解析的 db、table、function、partition 等对应的 node 上应用一条条 Rule(规则)来替换为新的 node,应用 Rule 的过程中往往会访问 catalog 来获取相应的信息。
Spark sql通过Analyzer中 定义的rule把Parsed Logical Plan解析成 Analyzed Logical Plan;通过Optimizer定义的rule把 Analyzed Logical Plan 优化成 Optimized Logical Plan 。
继续上回的内容[[108-R可视化32-通过seurat包中的LabelClusters学习ggplot之一]]。
element:http://element-cn.eleme.io/#/zh-CN/component/table
享元模式是一种结构型设计模式, 它摒弃了在每个对象中保存所有数据的方式, 通过共享多个对象所共有的相同状态, 让你能在有限的内存容量中载入更多对象。
迄今为止,在之前文章提到的所有功能点,都已经在MLSQL中实现。当然,拥有这些还是远远不够的,因为SQL语言自身的设计和用途上的限制,导致做很多事情还是会有点力有不逮,下部分内容我们会具体举一个例子。
Analyzer模块将Unresolved LogicalPlan结合元数据catalog进行绑定,最终转化为Resolved LogicalPlan。跟着代码看流程:
LogicalPlan的父类QueryPlan主要分为六个模块: – 输入输出 涉及QueryPlan内属性相关的输入输出 – 基本属性 QueryPlan内的基本属性 – 字符串 主要用于打印QueryPlan的树形结构信息 – 规范化 类似Expression中的规范化 – 表达式操作 – 约束 本质上也是数据过滤条件的一种,同样是表达式类型。通过显式的过滤条件推导约束
我们之前已经学习过了《我们在学习Spark的时候,到底在学习什么?》,这其中有一个关于SQL的重要模块:SparkSQL。
好久没更新博客了,之前学了一些R语言和机器学习的内容,做了一些笔记,之后也会放到博客上面来给大家共享。一个月前就打算更新Spark Sql的内容了,因为一些别的事情耽误了,今天就简单写点,Spark1.2马上就要出来了,不知道变动会不会很大,据说添加了很多的新功能呢,期待中... 首先声明一下这个版本的代码是1.1的,之前讲的都是1.0的。 Spark支持两种模式,一种是在spark里面直接写sql,可以通过sql来查询对象,类似.net的LINQ一样,另外一种支持hive的HQL。不管是哪种方式,下面提到
OpenVDB 是一个获得奥斯卡奖的数据结构,在github上有对应的C++开源库,包含一个分层数据结构和一套工具,用于高效存储和操作在三维网格上离散化的稀疏体积数据。它由 DreamWorks Animation 开发,用于故事片制作中通常遇到的体积应用程序,现在由 Academy Software Foundation (ASWF) 维护,采用 MPL2.0 协议。
然后,这不,你就会安装一下这些依赖库,如是,就可以对这个devtools的原理进行一个初步的分析。
时逢6.18钉钉应用大促,为避免高负载下钉钉微应用的稳定性问题,遂赶工赶时完成钉钉方要求的稳定性压测,以此为楔,深探Jmeter,事后总结,是以成文。不愿窃为私有,分享给诸位QA同学,以期遇坑绕之,少些弯路。
领取专属 10元无门槛券
手把手带您无忧上云