首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

tensorflow读取数据-tfrecord格式

概述关于tensorflow读取数据,官网给出了三种方法: 1、供给数据:在tensorflow程序运行的每一步,让python代码来供给数据 2、从文件读取数据:建立输入管线从文件中读取数据 3、预加载数据...这里主要介绍一种比较通用、高效的数据读取方法,就是tensorflow官方推荐的标准格式:tfrecord。...tfrecord数据文件 tfrecord数据文件是一种将图像数据和标签统一存储的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储等。...读取tfrecord数据 从TFRecords文件中读取数据, 首先需要用tf.train.string_input_producer生成一个解析队列。...下面代码实现了tfrecord数据的读取: if __name__==’__main__’: tfrecords_filename = "train.tfrecords" test_write_to_tfrecords

2.6K60

Tensorflow数据读取之tfrecord

文章目录 tfrecord tfrecord的使用流程 写入tfrecord文件 读取tfrecord文件 tfrecord中的数据格式 tfrecord中对于变长数据和定长数据的处理 tfrecord...: 1.供给数据(Feeding): 在TensorFlow程序训练或者测试的每一个epoch,在tf.Session().run()函数中,以字典的形式通过feed_dict参数进行赋值。...2.从文件读取数据: 在TensorFlow图的起始, 让一个输入管线从文件中读取数据。 3.预加载数据: 在TensorFlow图中定义常量或变量来保存所有数据(仅适用于数据量比较小的情况)。...最近刚刚尝试了第三种方法,使用的是tensorflow内定的标准读取数据的格式—tfrecord,在这里记录一下。...读取tfrecord文件 从TFRecords文件中读取数据, 可以使用tf.TFRecordReader的tf.parse_single_example解析器。

80320
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Slim读取TFrecord文件

    2、使用Slim读取TFrecord文件的步骤1、设置解码器,一般设置为decoder=slim.tfexample_decoder.TFExampleDecoder(),同时要指定其keys_to_features...2、定义数据集类,一般为dataset=slim.dataset.Dataset():它把datasource、reader、decoder、num_samples等参数封装好。...3、定义数据集的数据提供者类,一般为provider=slim.dataset_data_provider.DatasetDataProvider(),需要传入的参数:dataset, num_readers...=reader_kwargs等参数初始化ParallelReader(),然后调用它的read(filename_queuq)方法,这个read()方法先用reader从filename_queue中读取数据然后...slim.tfexample_decoder.TFExampleDecoder(keys_to_features, items_to_handlers) # 定义dataset,该对象定义了数据集的文件位置

    1.5K21

    Tensorflow笔记:TFRecord的制作与读取

    前言 Google官方推荐在对于中大数据集来说,先将数据集转化为TFRecord数据,这样可加快你在数据读取,预处理中的速度。...除了“快”,还有另外一个优点就是,在多模态学习(比如视频+音频+文案作为特征)中可以将各种形式的特征预处理后统一放在TFRecord中,避免了读取数据时候的麻烦。 1....制作 以MNIST数据集为例(不论文本、图片、声音,都是先转化成numpy,在转化成TFRecord),在这里下载好之后,还需要像这样预处理一下。...,对于大数据集任务比较友好。...num_epochs: 将TFRecord中的数据重复几遍,如果是None,则永远循环读取不会停止 perform_shuffle: 是否乱序 Returns:

    2K20

    TensorFlow TFRecord数据集的生成与显示

    TensorFlow提供了TFRecord的格式来统一存储数据,TFRecord格式是一种将图像数据和标签放在一起的二进制文件,能更好的利用内存,在tensorflow中快速的复制,移动,读取,存储 等等...从TFRecords文件中读取数据, 可以使用tf.TFRecordReader的tf.parse_single_example解析器。...利用下列代码将图片生成为一个TFRecord数据集: import os import tensorflow as tf from PIL import Image import matplotlib.pyplot...将单个TFRecord类型数据集显示为图片 上面提到了,TFRecord类型是一个包含了图片数据和标签的合集,那么当我们生成了一个TFRecord文件后如何查看图片数据和标签是否匹配?...将多个TFRecord类型数据集显示为图片 与读取多个文件相比,只需要加入两行代码而已: data_path = 'F:\\bubbledata_4\\trainfile\\testdata.tfrecords

    6.8K145

    matlab读取mnist数据集(c语言从文件中读取数据)

    共有四个文件需要下载: train-images-idx3-ubyte.gz,训练集,共 60,000 幅(28*28)的图像数据; train-labels-idx1-ubyte.gz,训练集的标签信息...(取值为 0-9),60,000*1 t10k-images-idx3-ubyte.gz,测试集(t: test, 10k: 10,000),共 10,000 副(28*28)的图像数据 t10k-labels-idx1...-ubyte.gz,测试集的标签呢信息(取值为 0-9),10,000*1 更多详情, 请参考 Chris Olah’s visualizations of MNIST....image数据: 首先读取4个数据,分别是MagicNumber=2051,NumberofImages=6000,rows=28,colums=28,然后每读取rows×colums个数表示一张图片进行保存...: label数据读取与保存与image类似,区别在于只有MagicNumber=2049,NumberofImages=6000,然后每行读取的数据范围为0~9,因此令temp+1列为1,其余为0即可

    4.9K20

    数据集的划分--训练集、验证集和测试集

    为什么要划分数据集为训练集、验证集和测试集?         做科研,就要提出问题,找到解决方法,并证明其有效性。这里的工作有3个部分,一个是提出问题,一个是找到解决方法,另一个是证明有效性。...前人给出训练集、验证集和测试集 对于这种情况,那么只能跟随前人的数据划分进行,一般的比赛也是如此。...数据集首先划分出训练集与测试集(可以是4:1或者9:1)。                                 ...只需要把数据集划分为训练集和测试集即可,然后选取5次试验的平均值作为最终的性能评价。 验证集和测试集的区别         那么,训练集、校验集和测试集之间又有什么区别呢?...测试集是用于在完成神经网络训练过程后,为了客观评价模型在其未见过(未曾影响普通参数和超参数选择)的数据上的性能,因此测试与验证集和训练集之间也是独立不重叠的,而且测试集不能提出对参数或者超参数的修改意见

    5.3K50

    CIFAR10数据集实战-数据读取部分(上)

    本节课主要介绍CIFAR10数据集 登录http://www.cs.toronto.edu/~kriz/cifar.html网站,可以自行下载数据集。 打开页面后 ?...前讲的MNIST数据集为0~9的数字识别,而这里的为10类物品识别。由上可见物品包含有飞机、汽车、鸟、猫等。照片大小为32*32的彩色图片。...每一个类别大概有6000张照片,其中随机筛选出5000作为学习,余下的1000用于测试。 首先在pycharm软件中新建文件夹,并创建main.py文件。 ?...写到这里要注意这里只是建立了一次加载一张的代码 若想一次性加载一批,则要利用其多线程的特性 继续在引入工具包部分加入相关工具包 from torch.utils.data import DataLoader # 多线程数据读取...继续书写数据读取部分代码 ?

    2.3K10

    Spark读取变更Hudi数据集Schema实现分析

    介绍 Hudi支持上层Hive/Presto/Spark查询引擎,其中使用Spark读取Hudi数据集方法非常简单,在spark-shell或应用代码中,通过 spark.sqlContext.read.format...("org.apache.hudi").load便可加载Hudi数据集,本篇文章分析具体的实现。...而Hudi也自定义实现了 org.apache.hudi/ hudi来实现Spark对Hudi数据集的读写,Hudi中最重要的一个相关类为 DefaultSource,其实现了 CreatableRelationProvider...而过滤主要逻辑在 HoodieROTablePathFilter#accept方法中, HoodieROTablePathFilter会处理Hudi数据集和非Hudi数据集,对于Hudi数据集而言,会选取分区路径下最新的提交的...总结 当使用Spark查询Hudi数据集时,当数据的schema新增时,会获取单个分区的parquet文件来推导出schema,若变更schema后未更新该分区数据,那么新增的列是不会显示,否则会显示该新增的列

    2.7K20

    使用内存映射加快PyTorch数据集的读取

    但是如果数据本地存储,我们可以通过将整个数据集组合成一个文件,然后映射到内存中来优化读取操作,这样我们每次文件读取数据时就不需要访问磁盘,而是从内存中直接读取可以加快运行速度。...Dataset是我们进行数据集处理的实际部分,在这里我们编写训练时读取数据的过程,包括将样本加载到内存和进行必要的转换。...实现自定义数据集 接下来,我们将看到上面提到的三个方法的实现。...基准测试 为了实际展示性能提升,我将内存映射数据集实现与以经典方式读取文件的普通数据集实现进行了比较。这里使用的数据集由 350 张 jpg 图像组成。...从下面的结果中,我们可以看到我们的数据集比普通数据集快 30 倍以上: 总结 本文中介绍的方法在加速Pytorch的数据读取是非常有效的,尤其是使用大文件时,但是这个方法需要很大的内存,在做离线训练时是没有问题的

    95320

    使用内存映射加快PyTorch数据集的读取

    但是如果数据本地存储,我们可以通过将整个数据集组合成一个文件,然后映射到内存中来优化读取操作,这样我们每次文件读取数据时就不需要访问磁盘,而是从内存中直接读取可以加快运行速度。...Dataset是我们进行数据集处理的实际部分,在这里我们编写训练时读取数据的过程,包括将样本加载到内存和进行必要的转换。...对于更多的介绍请参考Numpy的文档,这里就不做详细的解释了 基准测试 为了实际展示性能提升,我将内存映射数据集实现与以经典方式读取文件的普通数据集实现进行了比较。...这里使用的数据集由 350 张 jpg 图像组成。...从下面的结果中,我们可以看到我们的数据集比普通数据集快 30 倍以上: 总结 本文中介绍的方法在加速Pytorch的数据读取是非常有效的,尤其是使用大文件时,但是这个方法需要很大的内存,在做离线训练时是没有问题的

    1.2K20
    领券