以下是训练模型的代码: import tensorflow as tf # 加载MNIST数据集 mnist = tf.keras.datasets.mnist (x_train, y_train),
以下是加载数据集的代码: import tensorflow as tf # 加载MNIST数据集 mnist = tf.keras.datasets.mnist (x_train, y_train)
__version__) mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data
import numpy as np import tensorflow as tf class MNistLoader(): def __init__(self): data = tf.keras.datasets.mnist...requests import matplotlib.pyplot as plt class MNistLoader(): def __init__(self): data = tf.keras.datasets.mnist
这个更新TF提供了类似Keras接口的High-API,大大简化了Tf的操作复杂度: import tensorflow as tf mnist = tf.keras.datasets.mnist (
Convert the samples from integers to floating-point numbers: mnist = tf.keras.datasets.mnist (x_train
absolute_import, division, print_function import tensorflow as tf # mnist 是一个手写数字集 mnist = tf.keras.datasets.mnist
import tensorflow as tf mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data
curated curriculums to improve your skills in foundational ML areas. import tensorflow as tf mnist = tf.keras.datasets.mnist
write a function that creates a simple Keras model for classifying the images into 10 classes. mnist = tf.keras.datasets.mnist
__version__) 2.0.0 # 加载手写数字集mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test) = mnist.load_data
import TensorFlow as tf mnist = tf.keras.datasets.mnist (x_train, y_train),(x_test, y_test) = mnist.load_data
Dense, Flatten, Conv2D from tensorflow.keras import Model Load and prepare the MNIST dataset. mnist = tf.keras.datasets.mnist
tensorflow as tf from tensorflow.keras.layers import Flatten, Dense, Dropout # 加载并准备好MNIST数据集 mnist = tf.keras.datasets.mnist...tensorflow.keras.layers import Dense, Flatten, Conv2Dfrom tensorflow.keras import Model # 加载并准备好MNIST数据集 mnist = tf.keras.datasets.mnist
division, print_function, \ unicode_literals import tensorflow as tf def train_model(): mnist = tf.keras.datasets.mnist
__version__) 3.2 导入数据集 mnist = tf.keras.datasets.mnist # 导入数据 mnist数据集 (x_train, y_train), (x_test,
# TensorFlow示例import tensorflow as tfmnist = tf.keras.datasets.mnist(x_train, y_train), (x_test, y_test
学习流程 加载手写数字数据集 class MNistLoader(): def __init__(self): data = tf.keras.datasets.mnist
以下是训练模型的代码:import tensorflow as tf# 加载MNIST数据集mnist = tf.keras.datasets.mnist(x_train, y_train), (x_test
领取专属 10元无门槛券
手把手带您无忧上云