TensorRT(TensorRT )是一个高性能深度学习推理优化器和运行时引擎,用于在 NVIDIA GPU 上加速深度学习推理。然而,在使用TensorRT时,我们可能会遇到一些错误提示。其中,一个常见的错误是:[TensorRT] ERROR: Network must have at least one output。本文将详细解释这个错误的含义,以及如何解决它。
一般的深度学习项目,训练时为了加快速度,会使用多 GPU 分布式训练。但在部署推理时,为了降低成本,往往使用单个 GPU 机器甚至嵌入式平台(比如 NVIDIA Jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如 caffe,TensorFlow 等。由于训练的网络模型可能会很大(比如,inception,resnet 等),参数很多,而且部署端的机器性能存在差异,就会导致推理速度慢,延迟高。这对于那些高实时性的应用场合是致命的,比如自动驾驶要求实时目标检测,目标追踪等。所以为了提高部署推理的速度,出现了很多轻量级神经网络,比如 squeezenet,mobilenet,shufflenet 等。基本做法都是基于现有的经典模型提出一种新的模型结构,然后用这些改造过的模型重新训练,再重新部署。
由于前期OpenVINO的分享已经基本做完了,笔者也可以成功的在CPU和Intel神经棒上完整的部署一些工作了,因此开始来学习TensorRT啦。先声明一下我使用的TensorRT版本是TensorRT-6.0.1.5 。
今天我将以GoogleNet为例来展示如何在TensorRT中实现细粒度的Profiling并且顺带介绍一下TensorRT的16Bit推理。
TensorRT是什么,TensorRT是英伟达公司出品的高性能的推断C++库,专门应用于边缘设备的推断,TensorRT可以将我们训练好的模型分解再进行融合,融合后的模型具有高度的集合度。例如卷积层和激活层进行融合后,计算速度可以就进行提升。当然,TensorRT远远不止这个:
2019年黄仁勋在GTC China正式发布了TensorRT 7,并称其是「我们实现的最大飞跃」。
日前,谷歌和英伟达宣布将 NVIDIA TensorRT 集成到 TensorFlow 1.7 中。在谷歌开发者博客中,他们介绍了此次合作的详细信息以及整合之后的性能,AI 研习社编译整理如下: TensorRT 是一个可以用于优化深度学习模型,以进行推理,并为生产环境中的 GPU 创建运行环境的库。它能优化 TensorFlow 中的 FP16 浮点数和 INT8 整型数,并能自动选择针对特定平台的内核,以最大化吞吐量,并最大限度的降低 GPU 推理期间的延迟。全新的集成工作流程简化了在 TensorFl
本次开源的内容是英伟达 TensorRT 的一部分,其中包括 TensorRT 的插件与一些解析器(Caffe 和 ONNX),以及演示 TensorRT 平台的使用和功能的示例应用程序。相信未来更多的内容也会持续开源。
12月2日,英伟达发布了最新的TensorRT 8.2版本,对10亿级参数的NLP模型进行了优化,其中就包括用于翻译和文本生成的T5和GPT-2。
mmdetection 是商汤科技(2018 COCO 目标检测挑战赛冠军)和香港中文大学开源的基于Pytorch实现的深度学习目标检测工具箱,性能强大,运算效率高,配置化编程,比较容易训练、测试。但pytorch模型不易于部署,运算速度还有进一步提升的空间,当前比较有效的方法是将模型转换为行为相同的tensorrt模型,本文记录转换流程。 任务思路 转换mmdetection 的 pytorch模型到tensorrt模型有多种方法,本文使用 mmdetection-to-tensorrt 库作为核
NVIDIA TensorRT是一个高性能深度学习推理平台。它包括深度学习推理优化器和运行时,可为深度学习推理应用程序提供低延迟和高吞吐量。推理时,基于TensorRT的应用程序比仅CPU平台的执行速度快40倍。使用TensorRT,您可以优化所有主流框架中训练出的神经网络模型。
作为在英伟达自家GPU上的推理库,这些年来一直被大力推广,更新也非常频繁,issue反馈也挺及时,社区的负责人员也很积极,简直不要太NICE。
在之前已经写到过一篇去介绍什么是TensorRT:利用TensorRT对深度学习进行加速,这篇文章中大概已经基本讨论了TensorRT究竟是个什么东西以及怎么使用它。
仿佛昨日还在探讨NVIDIA TensorRT 8.5版本的新颖特性,而本周,NVIDIA已然推出了全新的TensorRT 10.0。这次也是大版本更新,让我们来扒一扒有哪些让人耳目一新的功能
AI模型近年来被广泛应用于图像、视频处理,并在超分、降噪、插帧等应用中展现了良好的效果。但由于图像AI模型的计算量大,即便部署在GPU上,有时仍达不到理想的运行速度。为此,NVIDIA推出了TensorRT,成倍提高了AI模型的推理效率。本次LiveVideoStack线上分享邀请到了英伟达DevTech团队技术负责人季光一起探讨把模型运行到TensorRT的简易方法,帮助GPU编程的初学者加速自己的AI模型。
2022 年 3 月 25 日,腾讯联合英伟达开发的 TensorRT 插件自动生成工具 TPAT 正式宣布开源。 TensorRT 是当前应用最广的 GPU 推理框架,但由于支持的算子数量有限,用户面临手写插件以支持算子的痛点。TPAT 能够支持开放神经网络交换 (ONNX) 格式所有的算子,端到端生成 TensorRT 插件,在解放人力成本的同时,性能对比手写毫不逊色。 TPAT Github 地址:https://github.com/Tencent/TPAT 背景 TensorRT 是当今最快的
不得不相信英伟达总能给我们惊喜,老潘作为一名深度学习从业者以及游戏爱好者,对于这种与AI、GPU、并行计算相关的话题一直都是比较感兴趣。作为深度学习第一大硬件平台的英伟达,我们自然熟悉的不能再熟悉了。
在充满活力的生成式人工智能领域,扩散模型以其能够通过文本提示生成高质量图像而脱颖而出。像Stable Diffusion这样的模型已经彻底改变了创意领域的格局。
一般的深度学习项目,训练时为了加快速度,会使用多GPU分布式训练。但在部署推理时,为了降低成本,往往使用单个GPU机器甚至嵌入式平台(比如 NVIDIA Jetson)进行部署,部署端也要有与训练时相同的深度学习环境,如caffe,TensorFlow等。由于训练的网络模型可能会很大(比如,inception,resnet等),参数很多,而且部署端的机器性能存在差异,就会导致推理速度慢,延迟高。这对于那些高实时性的应用场合是致命的,比如自动驾驶要求实时目标检测,目标追踪等。所以为了提高部署推理的速度,出现了很多轻量级神经网络,比如squeezenet,mobilenet,shufflenet等。基本做法都是基于现有的经典模型提出一种新的模型结构,然后用这些改造过的模型重新训练,再重新部署。
AI 研习社按,日前,谷歌和英伟达宣布将 NVIDIA TensorRT 集成到 TensorFlow 1.7 中。在谷歌开发者博客中,他们介绍了此次合作的详细信息以及整合之后的性能,AI 研习社编译整理如下:
对于Lady来说,我信了你的邪!我决定把之前发布的关于TensorRT的视频教程再综合地整理一遍。
大家好,我叫乔治。嗨,我是迪拉杰,我们都是NVIDIA的深度学习软件工程师。今天我们在这里讨论使用Torch TensorRT加速PyTorch推断。首先,我们会给大家简短介绍一下Torch TensorRT是什么,然后乔治将深入介绍我们优化PyTorch模型的用户工作流程。最后,我们将比较这两种方法,并讨论一些正在进行的未来工作。现在我将把话筒交给乔治。
本次NANO Hackathon活动主要向用户推广在JetsonNANO平台上利用TensorRT,TransferLearning Toolkit(TLT)这两个开发工具,在实际应用中解决深度学习推理和训练上的问题。本次活动以口罩检测为主题,学生利用TransferLearning Toolkit训练ssd_mobilenet_v2等目标检测模型,并把训练好的模型利用TensorRT部署在Jetson NANO平台上来对视频进行人脸口罩检测。以下是从活动的微信群,webex会议等渠道收集概括的学生提出的问题。主要帮助学生解决了环境部署,API调用,代码调优等方面产生的问题。
刚刚,英伟达发布了一款开源软件TensorRT-LLM,能够加速H100上大型语言模型的推理。
tensorRT 7+ 安装教程
2018年9月,NVIDIA推出了NVIDIA TensorRT推理服务器,这是一种适用于数据中心推理部署的生产就绪解决方案。TensorRT推理服务器最大化GPU利用率,支持所有流行的AI框架,今天NVIDIA宣布开源NVIDIA TensorRT推理服务器。
TensorRT支援热门的深度学习开发框架,可以最佳化这些框架开发的模型,并部署到嵌入式、自动驾驶或是资料中心平台
今天是程序员节,当然是以程序员的方式来度过节日。 很早就听说TensorRT可以加速模型推理,但一直没时间去进行实践,今天就来把这个陈年旧坑填补一下。
随着CV算法在业务场景中使用越来越多,给我们带来了新的挑战,需要提升Python推理服务的性能以降低生产环境成本。为此我们深入去研究Python GPU推理服务的工作原理,推理模型优化的方法。最终通过两项关键的技术: 1.Python的GPU与CPU进程分离,2.使用TensorRT对模型进行加速,使得线上大部分模型服务QPS提升5-10倍左右,大量节约了线上GPU推理服务的成本。
下面是左边是python框架推理结果,右边是TensorRT-Alpha推理结果。
12月22日,量子位联合NVIDIA英伟达举行了线下交流会,跟现场近百位开发者同学共同探讨了如何用TensorRT加速深度学习推理计算,详细讲解了GPU的推理引擎TensorRT,以及如何配合Deepstream实现完整加速推理的解决方案。
点击上方蓝字关注我们 微信公众号:OpenCV学堂 关注获取更多计算机视觉与深度学习知识 版本信息 首先必须要交代一下硬件跟依赖包的版本信息 -GPU -3050ti-Win10 x64-CUDA11.0.1-cuDNN8.2.x-TensorRT8.4.0.x-Python3.6.5-Pytorch1.7.1 然后我还下载了YOLOv5的最新版本,并测试通过如下: Python API配置支持 我把tensorRT解压在D:\TensorRT-8.4.0.6 目录结果如下: 首先输入
作为Inference(推理)端的SDK的工具,TensorRT是可编程的处理加速器,主要是用来部署神经网络到Inference端之前,对于网络进行优化加速,来提高程序的吞吐量以及降低延迟。TensorRT理论上可以支持所有主流的深度学习框架,目前最新的版本是3.0版,可以支持Caffe 模型的直接导入,还有就是TensorFlow模型转换为UFF格式后的导入。对于其他的framework,需要用户手动的去调用一些API进行模型和参数的导入,而且在TensorRT 3.0里面还加入了对Python接口的
近几年来,随着算力的不断提升和数据的不断增长,深度学习算法有了长足的发展。深度学习算法也越来越多的应用在各个领域中,比如图像处理在安防领域和自动驾驶领域的应用,再比如语音处理和自然语言处理,以及各种各样的推荐算法。如何让深度学习算法在不同的平台上跑的更快,这是深度学习模型部署所要研究的问题。
随着大模型项目的开源环境越来越好,大家在本地部署一个大语言模型跑demo应该是一件很简单的事情。但是要将模型运行到生产环境,就需要考虑模型运行性能,GPU资源的调度,高并发场景的支持等情况了。
完整内容主要介绍使用TensorFlow开发的深度神经网络如何部署在NVIDIA Jetson上,并利用TensorRT加速到5倍。
本文前提是cuda和cudnn以及TensorRT已经安装完毕,具体详情,可以参考上一篇文章: https://developer.nvidia-china.com/forum.php?mod=vie
NVIDIA去年发布了一个线上讲座,题目是《 AI at the Edge TensorFlow to TensorRT on Jetson 》。
前段时间研究了Pytorch的环境配置,之后便从github上下载了yolov5的源码,并在自己的电脑端配置好对应的环境并运行,最后发现生成的权重文件yolov5s.pt不仅可以通过量化压缩成onxx模型,而且还可以使用TensorRT推理加速生成engine模型,这对使得模型部署在移动端具有很大的优势,于是便尝试着在自己的电脑上通过TensorRT部署yolov5模型。 现在网上有很多可以参考的博客,但大多数都是针对某一个环节进行了仔细的解释说明,这在前期的学习中不免会让人产生云里雾里的感觉,难以从一个全局的角度去看待这个问题,换句话说就是很少有把整个流程先总结下来,先让我们知道需要那些模块,该准备些什么模块,以及这些模块之间又有什么样的联系,然后再细分到各个小模块去说明解释。所以今天就从这个角度去发出,总结一下最近学习的一些内容。在此之前假设你已经掌握了Pytorch、CUDA、cuDNN的基础知识以及配置好了yolov5的环境并调试运行过源码
大家好,我是海滨。写这篇文章的目的是为宣传我在23年初到现在完成的一项工作---Yolo系列模型在TensorRT上的部署与量化加速,目前以通过视频的形式在B站发布(不收费,只图一个一剑三连)。
在测试TensorFlow可用性时(tf.test.is_gpu_available())出现错误Could not load dynamic library'libnvinfer.so.6',本文记录解决方法。 错误原因 没有安装 TensorRT 关于NVIDIA TensorRT: NVIDIA TensorRT是一种高性能神经网络推理(Inference)引擎,用于在生产环境中部署深度学习应用程序,应用有图像分类、分割和目标检测等,可提供最大的推理吞吐量和效率。TensorRT是第一款
北京时间 9 月 26 日,在英伟达 GPU 技术峰会上,英伟达创始人兼 CEO 黄仁勋正式发布 TensorRT 3 神经网络推理加速器。据官方介绍,TensorRT 3 能极大改善处理性能,削减从云到边缘设备(自动驾驶汽车、机器人等)的推理开销。 TensorRT 3 是在 Volta GPU 实现最优推理性能的关键,比起 CPU 它能实现高达 40 倍的吞吐量,时延在 7ms 之内。目前,对于英伟达开发者计划成员,现在有针对 Tesla GPU (P4, P100, V100) 和 Jetson 嵌入
在使用 NVIDIA TensorRT 进行深度学习模型推理时,你可能会遇到类似下面的错误信息:
Lady我总结了NVIDIA官方论坛推荐的几个在Jetson TX2跑的例子/教程,供各小主儿们学习。
TensorRT-LLM是一个由Nvidia设计的开源框架,用于在生产环境中提高大型语言模型的性能。该框架是基于 TensorRT 深度学习编译框架来构建、编译并执行计算图,并借鉴了许多 FastTransformer 中高效的 Kernels 实现,并且可以利用 NCCL 完成设备之间的通讯。
随着深度学习的应用场景不断拓展,应用规模的不断扩大,模型推理服务的性能也受到越来越多重视。同样一个模型在同样的硬件上,专业的模型优化在同样的推理精度下可能会带来几倍甚至几十倍的性能提升。一般来说,使用专用推理框架比如TensorRT、OpenVINO等,推理性能会好于Tensorflow,Pytorch等深度学习框架,对模型的定制优化推理性能会好于直接使用专用推理框架。
2020年初,我写过的pytorch程序有个Hello Wrold的版本的模型就是mnist.onnx,我来测试一下是否可以通过TensorRT来实现对ONNX格式模型加载。重启VS2017之后在原来的空项目上然后添加一个cpp文件,把下面的代码copy到cpp文件中:
今日,NVIDIA 正式宣布一项令人振奋的消息:TensorRT-LLM(大型语言模型加速器)正式开源!这是一个重大突破,将为那些想要在NVIDIA GPU上加速和优化最新LLMs的推理性能的人们带来福音。让我们一起深入了解这个激动人心的开源项目,探索它的意义和应用。
NVIDIA发布了TensorRT 4,其新功能可加速GPU上神经机器翻译(NMT)应用的推断。
领取专属 10元无门槛券
手把手带您无忧上云