之前用的和学习的都是pytorch框架,现在要运行一个keras的代码,得安装tensorflow和keras,按一个教程,直接在pycharm里setting,点那个+很快就装好了tensorflow和keras,运行了几次发现运行特别慢,用nvidia-smi查看,发现根本没有用pgu跑,一番查找,最后发现安装的tensorflow本身是按CPU跑的,要用GPU跑,得安装tensorflow-gpu。 以下主要参考了https://blog.csdn.net/qq_38502918/article/details/108009692进行操作,成功安装了tensorflow-gpu版本的。 记录以下安装过程。 重点: CUDA的版本要与tensorflow-gpu的一定要对应,否则会出错。 注意点: 安装好tensorflow-gpu后,安装对应版本的keras版本。 https://blog.csdn.net/weixin_40109345/article/details/106730050
本人非专业开发者,之前也没用过云服务器,所以在实践过程会遇到一些新手才会有的困惑。简单分享一下,给同样困惑的朋友一点借鉴,大神可以略过,谢谢!
首先,我的服务器分配的IP是10.0.3.153,端口是9380至9389,服务器的域名为ras.sysu.edu.cn
最近公司给我们分配了2台虚拟机服务器用于强化学习训练,我们在虚拟环境中安装好了TensorFlow环境后,在import tensorflow时发现报了下面的错误:
得益于更快的计算,更好的存储和易于使用的软件,基于深度学习的解决方案绝对可以看到从概念验证隧道进入现实世界的曙光!看到深度学习模型已广泛应用于该行业的各个领域,包括医疗保健,金融,零售,技术,物流,食品技术,农业等!考虑到深度学习模型需要大量资源并且经常需要大量计算的事实,因此我们需要暂停片刻,并考虑一下最终用户使用模型时的推断和服务时间。
腾讯云比阿里云的GPU服务器更多一些,在阿里云上有时会出现没有GPU服务器或者售罄。
近日,新入一台RTX3080的服务器,目前好像还没办法很方便地在 RTX 30 系列 GPU上通过 pip/conda 安装 TensorFlow 或 PyTorch。因为这些 GPU 需要 CUDA 11.1,而当前主流的 TensorFlow/PyTorch 版本不是针对 CUDA 11.1 编译的。现在要在 30XX GPU 上运行这些库的话,需要很强的动手能力,手动编译或者用英伟达 docker 容器。
在机器学习的领域中,张量指的是描述神经网络的数学模型中使用的多维数组。换言之,张量通常是一个矩阵或矢量的更高维泛化。 通过一种使用秩来显示维数的简单表示法,张量可以将复杂的 n 维矢量和超形状表示为 n 维数组。张量有两个属性:数据类型和形状。 关于 TensorFlow TensorFlow 是一个开源的深度学习框架,于 2015 年末依据 Apache 2.0 许可进行发布。自那以后,它成为了在全球得到最广泛采用的深度学习框架之一(根据它的 GitHub 项目数量来判断)。 TensorFlow 的起源
“产品使用攻略”、“上云技术实践” 有奖征集啦~ 图片案例名称案例简介使用 Windows GPU 云服务器搭建深度学习环境介绍如何使用 Windows GPU 云服务器,通过云服务器控制台从零开始手动搭建基于 PyTorch 和 TensorFlow 的深度学习环境。使用 Docker 安装 TensorFlow 并设置 GPU/CPU 支持介绍如何使用 Docker 安装 TensorFlow,并在容器中下载及运行支持 GPU/CPU 的 TensorFlow 镜像。使用 GPU 云服务器训练 ViT
TensorFlow是一款由Google构建的用于训练神经网络的开源机器学习软件。TensorFlow的神经网络以有状态数据流图的形式表示。图中的每个节点表示神经网络在多维阵列上执行的操作。这些多维数组通常称为“张量”,因此称为TensorFlow。
TensorFlow是一款由Google构建的用于训练神经网络的开源机器学习软件。TensorFlow的神经网络以有状态数据流图的形式表示。图中的每个节点表示神经网络在多维阵列上执行的操作。这些多维数组通常称为“张量”,因此称为TensorFlow。TensorFlow架构允许在台式机,服务器或移动设备中的多个CPU或GPU上进行部署。还有与Nvidia的并行计算平台CUDA集成的扩展。这使得在GPU上部署的用户可以直接访问并行计算任务所需的虚拟指令集和GPU的其他元素。
安装conda 下载地址:https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh 下载完成后执行: bash Miniconda2-latest-Linux-x86_64.sh 安装地址:xlz/Miniconda 刷新一下配置文件:source /home/xlz/.bashrc #这里是管理员权限吼 创建实验环境:conda create -n stackGan python=2.7 #我们创建一个虚拟2.7环
最近comma.ai George Hotz 开源了他们的自动驾驶系统,扬言挑战谷歌tesla,什么,你没听说过,那请看本号的前一篇介绍文章或搜索相关内容。 本文下面就来介绍一下如何搭建相关环境测试commaai开源的深度网络自动驾驶系统;在 github.com/commaai/research 我们可以看到对此系统的简单介绍,文档介绍了有两个子系统需要训练:Drive Simulator和Steering Angle model,看内容需要先训练Drive Simulator模型,Drive Simul
最近公司给我们分配了2台虚拟机服务器用于强化学习训练,我们在虚拟环境中安装好了TensorFlow环境后,在import tensorflow时发现报了下面的错误: 于是我去Google搜索了下出现这个错误的原因,发现是因为我们服务器的CPU不支持AVX指令集导致的,而使用pip安装的TensorFlow需要依赖AVX指令集,为了确认我们的CPU是否真的不支持AVX指令集,我使用cat /proc/cpuinfo 命令查看了下目前CPU指令集支持情况,发现我们的CPU果然不支持AVX指令集。 又不支持
在第 11 章,我们讨论了几种可以明显加速训练的技术:更好的权重初始化,批量标准化,复杂的优化器等等。 但是,即使采用了所有这些技术,在具有单个 CPU 的单台机器上训练大型神经网络可能需要几天甚至几周的时间。
最近学校给了一个服务器账号用来训练神经网络使用,服务器本身配置是十路titan V,然后在上面装了tensorflow2.2,对应的python版本是3.6.2,装好之后用tf.test.is_gpu_available()查看是否能调用gpu,结果返回结果是false,具体如下:
安装环境为CENTOS6.8操作系统,pip安装tensorflow后提示GLIBC版本过低。考虑到升级GLIBC有一定的风险,所以决定使用编译安装的方式安装tensorflow。基本流程是按照这篇教程: http://www.jianshu.com/p/fdb7b54b616e/ 进行的,但是因为选择使用的版本有些不同,自己又遇到了一些坑。所以重新整理一下操作步骤。为了使安装步骤对操作系统影响最小,安装时不使用root账户以及sudo权限,而是使用了一个普通账户makeuser进行操作(少数步骤需要使用root操作)
我们的AI入门课程已经讲过两节了,前面我们讲了AI的概念、算法、工具等内容,第三节我们会介绍一些实际操作的内容。俗话说,工欲善其事,必先利其器,这篇文章我们将告诉大家如何搭建一个AI实验室,并穿插一些小Demo,为后面的AI学习实践做好准备。
又是一年一度的十一黄金旅游周,你是在景区看人从众叕,还是在高速公路上观看大妈打太极呢?旅游黄金周我一般是尽量不出门,这个十一也不例外。十月一日跑了一个半马迎接国庆,十月二号选择去了一个偏门的景点:张之洞与武汉博物馆。今天则宅在家,吃吃喝喝之余,琢磨起识别狗狗的微信小程序。
一、Ubunutu20.4系统设置root登录及密钥登录 1、进入服务器主界面,将系统更换为Ubuntu20.4 https://console.cloud.tencent.com/cvm/insta
最近导师安排了一个论文模型复现的工作,奈何硬件条件不够,只能到处搜罗免费的GPU资源,过上了白嫖百家GPU资源的日子,这时候刚好遇见了腾讯的GPU云服务器体验活动,可谓是久旱逢甘霖。作为一名零基础小白,现将自己使用GPU云服务器(以Windows系统为例)搭建自己的深度学习环境的过程记录下来,方便大家参考。
选自Hive Blog 作者:Bowei 机器之心编译 参与:李亚洲、李泽南 本文将介绍一种将训练后的机器学习模型快速部署到生产种的方式。如果你已使用 TensorFlow 或 Caffe 等深度学习框架训练好了 ML 模型,该模型可以作为 demo。如果你更喜欢轻量级的解决方案,请阅读本文。 GitHub 地址:https://github.com/hiveml/simple-ml-serving 其中包含的条目有: 检查 TensorFlow 安装:https://github.com/hiveml/s
最近在跑深度学习,需要大量的算力资源,偶然机会注意到了腾讯云的GPU云服务器的体验活动,果断参加,现将我个人的快速上手体验和遇到的问题分享给大家,请大家指正。
许多软件都会使用一些库和独立维护的软件包。对于开发者而言,这是一件好事,因为这种做法有利于代码复用,而且他们 可专注于创建新的功能,而无需重复造轮。然而,这种做法也会付出一定的代价。如果某个程序的
选自Uber 作者:Alex Sergeev、Mike Del Balso 机器之心编译 参与:李泽南、路雪 Horovod 是 Uber 开源的又一个深度学习工具,它的发展吸取了 Facebook「一小时训练 ImageNet 论文」与百度 Ring Allreduce 的优点,可为用户实现分布式训练提供帮助。本文将简要介绍这一框架的特性。 近年来,深度学习引领了图像处理、语音识别和预测等方面的巨大进步。在 Uber,我们将深度学习应用到了公司业务中,从自动驾驶搜索路线到防御欺诈,深度学习让我们的数据科
大数据文摘作品 编译:姜范波、云舟 本文讲的是如何快速而不求完美地部署一个训练好的机器学习模型并应用到实际中。如果你已经成功地使用诸如Tensorflow或Caffe这样的框架训练好了一个机器学习模型,现在你正在试图让这个模型能够快速的演示,那么读这篇文章就对了。 阅读时长: 10-15分钟 使用前检查清单 检查tensorflow的安装 从 stdin 运行在线分类 在本地运行分类 把分类器放到硬编码(hardcoded)的代理 把分类器放到有服务发现(service discovery)的代理 用一
过去的几年中,Python 已成为机器学习和深度学习的首选编程语言。与机器学习和深度学习相关的大多数书籍和在线课程要么只用 Python,要么再带上 R 语言。Python 有着丰富的机器学习和深度学习库、专门优化的实现,具备可伸缩性和大量功能,因而广受欢迎。
导读 本周开源云业内倒是出现一些比较有趣的消息。首先是Deepo项目在GitHub上的爆红。小编简单了解了一下该项目,用“强大”来形容并不为过,其不但能实现快速配置深度学习环境,还支持几乎所有常见的深度学习框架。另一则消息是 OpenContrail 项目将被 Linux 基金会接管。2013年,Juniper 发布 OpenContrail,OpenContrail被设计为能够在OpenStack云管理平台上工作。另外一则消息是一件“好人好事”,近日腾讯发现谷歌人工智能学习系统TensorFlow存在严重
一般来说我们会在笔记本或者 PC 端编写模型和训练代码,准备一些数据,配置训练之后会在笔记本或者 PC 端做一个简单验证,如果这些代码数据都 OK 的话,然后真正的训练放在计算力更强的的计算机上面执行,一般来说至少有一块或者多块 GPU,有相当好的显存和内存,接下来实验一下。 选择一个支持 TensorFlow GPU 的计算机 当务之急是找到一块可以用于 TensorFlow 的显卡,TensorFlow 只支持在 NVIDIA 的部分高端显卡上面进行 GPU 加速, 在 NVIDIA 开发者中心可以找到
选自Medium 作者:Erik Hallström 机器之心编译 参与:机器之心编辑部 一般而言,大型的神经网络对硬件能力有着较高的需求——往往需要强劲的 GPU 来加速计算。但是你也许还是想拿着一台笔记本坐在咖啡店里安静地写 TensorFlow 代码,同时还能享受每秒数万亿次的浮点运算(teraFLOPS)速度?其实这个目标不难实现,使用 PyCharm 中的一个远程解释器,你就能通过远程的方式获得几乎和本地计算时一样的性能。Erik Hallström 在本文中分享了如何使用 PyCharm、Ten
该库是 TensorFlow 在 Spark 上的实现,旨在 Spark 上使用 TensorFlow 提供一个简单的、易于理解的接口。借助 SparkFlow,开发者可以轻松地将深度学习模型与 ML Spark Pipeline 相集成。SparkFlow 使用参数服务器以分布式方式训练 Tensorflow 网络,通过 API,用户可以指定训练风格,无论是 Hogwild 还是异步锁定。
目前(至11/7/2020)我们还无法在英伟达 RTX 30 系列 GPU(Ampere)上通过 pip/conda 安装 TensorFlow 或 PyTorch。因为这些 GPU 需要 CUDA 11.1,而当前主流的 TensorFlow/PyTorch 版本不是针对 CUDA 11.1 编译的。现在要在 30XX GPU 上运行这些库的话只能手动编译或者用英伟达 docker 容器。
TensorFlow Serving是google提供的一种生产环境部署方案,一般来说在做算法训练后,都会导出一个模型,在应用中直接使用。
本文记录在Linux服务器更换Nvidia驱动的流程。 需求 Linux 服务器上的 1080Ti 显卡驱动为387, CUDA 9,比较老旧,需要更换成可以运行pytorch 1.6的环境。 确定当前显卡型号\操作系统版本\目标环境 查看显卡信息,确定自己的显卡型号: $ nvidia-smi 或 $ lspci | grep -i vga 输出的设备信息并不是我们熟悉的型号,比如我的输出为: 02:00.0 VGA compatible controller: NVIDIA Corpo
首先,我们需要准备下载text to image 资源,我打算跑的代码地址。 要求的版本 然后查看自己的服务器cudn,tensorflow,NLTK,如图 1.tensorflow版本 python import tensorflow as tf tf.__version__ 如果不报错并显示版本,则安装正确,否则按照安装教程这个链接自行安装。 tf.__path__ 路径 直接输入上面的命令,得到这个结果 2.tensorlayer版本
TensorFlow.js 是一个开源库,不仅可以在浏览器中运行机器学习模型,还可以训练模型。具有 GPU 加速功能,并自动支持 WebGL。可以导入已经训练好的模型,也可以在浏览器中重新训练现有的所有机器学习模型。运行 Tensorflow.js 只需要你的浏览器,而且在本地开发的代码与发送给用户的代码是相同的。
因为之前公司服务器的硬盘出现损坏,导致服务器不能使用,也把我的Jupyter Notebook里的东西全部销毁了。之前那些代码和数据都找不回来了,郁闷了几天。因为自己平时都会做一些技术研究,写写一些demo,为了方便,公司和家里的电脑,都尽量共用一个环境。特别是Python这个,那些库的版本,感觉很乱,没有统一好,而且版本之间的差异性还是比较大。最近想起,PyCharm是可以支持配置远程python环境,也就是远程解释器。以前自己都想配置的,在网上搜了一下,看了一些博客,感觉好麻烦,最后就放弃了。
在了解如何利用TesnsorFlow构建和训练各种模型——从基本的机器学习模型到复杂的深度学习网络后,我们就要考虑如何将训练好的模型投入于产品,以使其能够为其他应用所用,本文对此将进行详细介绍。文章节选自《面向机器智能的TensorFlow实践》第7章。 本文将创建一个简单的Web App,使用户能够上传一幅图像,并对其运行Inception模型,实现图像的自动分类。 搭建TensorFlow服务开发环境 Docker镜像 TensorFlow服务是用于构建允许用户在产品中使用我们提供的模型的服务器的工具。
到https://developer.nvidia.com/cuda-gpus查询GPU支持的CUDA版本:
设置日志级别。参见准备环境完成环境配置。以运行用户登录安装Toolkit组件的服务器。执行命令,设置日志级别、获取日志文件。adc –host xx.xx.xx.xx:22118 –log ‘SetLogLevel(0)[error]’
7月21日,量子位联合NVIDIA英伟达举行了线下交流会,跟现场近百位开发者同学共同探讨了深度学习服务器搭建过程中可能出现的问题,交流了在开发中的实战经验。
step2,通过pip安装tensorflow:pip install tensorflow=1.5
相关信息: VMware招聘机器学习和云原生开发工程师 VMware招聘内源开发工程师 VMware招聘应届生开发工程师 《Harbor权威指南》新书发布 1. 背景 ---- GPU作为一种加速器芯片,在机器学习,特别是深度学习中得到广泛的应用。但是,无论是企业、学校、医院或者政府单位,决定在人工智能领域进行投入时,领导却发现: 投入了100万,光买设备就花了80万,工程师还经常抱怨GPU资源不够用 当工程师雄心勃勃打算开始干活,却发现花了一个多星期,IT环境还没有搞好 究其原因,大致有以下三个:
本教程将介绍如何使用腾讯云的GPU云服务器、对象存储、云原生大数据平台等产品来搭建Transformer模型的训练环境。包括开通云服务、配置环境、代码实现等内容。
随着深度学习技术的快速发展,模型的跨平台移植与部署变得越来越重要。无论是将模型从开发环境移植到生产环境,还是在不同的硬件平台上运行,跨平台部署都能显著提高模型的实用性和可扩展性。本文将介绍如何使用Python实现深度学习模型的跨平台移植与部署,并提供详细的代码示例。
2017国庆快乐,非常开心,难得有充足的时间,可以撸代码。最近人工智能的风口很火爆,基于我掌握的情况,可以先了解,最好复习下高中数学知识(矩阵,多维数据,多元N次方程式)。不然很难看懂学习模型,学习公式。 从关系上讲: 人工智能(Artificial Intelligence)是一个最广泛的概念,人工智能的目的就是让计算机这台机器能够象人一样思考或者通过一些算法来达到,而机器学习(Machine Learning)是人工智能的分支,而深度学习(Deep Learning)是人工智能和机器学习的内在,即使用包含复杂结构或由多重非线性变换构成的多个处理层(神经网络)对数据进行高层抽象的算法。所以三者关系应该式从外到内:AI→ML→DL→神经网络
今天一起来看看尝试下 Google Colab 工具,一款由 Google 出品,免费面向大众的、可使用 GPU、TPU 来训练模型的给力在线工具!!
领取专属 10元无门槛券
手把手带您无忧上云