TensorFlow程序可以通过tf.device函数来指定运行每一个操作的设备,这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。但在本文中只关心本地的设备。TensorFlow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称来指定执行运算的设备。比如CPU在TensorFlow中的名称为/cpu:0。在默认情况下,即使机器有多个CPU,TensorFlow也不会区分它们,所有的CPU都使用/cpu:0作为名称。而一台机器上不同GPU的名称是不同的,第n个GPU在TensorFlow中的名称为/gpu:n。比如第一个GPU的名称为/gpu:0,第二个GPU名称为/gpu:1,以此类推。
要将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。比如Inception-v3模型在单机上训练到78%的正确率需要将近半年的时间 ,这样的训练速度是完全无法应用到实际生产中的。为了加速训练过程,本章将介绍如何通过TensorFlow利用GPU或/和分布式计算进行模型训练。本文节选自《TensorFlow:实战Google深度学习框架》第十章。 本文将介绍如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成TensorFlow会话(tf.Session)时的一
作者:才云科技Caicloud,郑泽宇,顾思宇 要将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。比如Inception-v3模型在单机上训练到78%的正确率需要将近半年的时间 ,这样的训练速度是完全无法应用到实际生产中的。为了加速训练过程,本章将介绍如何通过TensorFlow利用GPU或/和分布式计算进行模型训练。本文节选自《TensorFlow:实战Google深度学习框架》第十章。 本文将介绍如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成T
作者:才云科技Caicloud,郑泽宇,顾思宇 要将深度学习应用到实际问题中,一个非常大的问题在于训练深度学习模型需要的计算量太大。比如Inception-v3模型在单机上训练到78%的正确率需要将近半年的时间 ,这样的训练速度是完全无法应用到实际生产中的。为了加速训练过程,本章将介绍如何通过TensorFlow利用GPU或/和分布式计算进行模型训练。本文节选自《TensorFlow:实战Google深度学习框架》第十章。 本文将介绍如何在TensorFlow中使用单个GPU进行计算加速,也将介绍生成Ten
本文介绍在Linux操作系统的发行版本Ubuntu中,配置可以用CPU或GPU运行的Python新版本深度学习库tensorflow的方法。
在深度学习框架GPU版本安装成功后,需要测试一下是否成功安装。GPU版本不像CPU版本的简单,CPU版本测试一般只需import一下测试是否能正确导入即可。GPU版本还需要测试CUDA或者GPU模块是否能正确调用起来。
我们都知道,一般情况下,一张图像在计算机中的存储格式是三个矩阵(RGB 格式),当然也有四个矩阵(RGBA 格式)或者一个矩阵(灰度图)的情形。然而,进行数据传输的过程中如果直接从发送方把数据原封不动的传给接收方会非常浪费传输带宽,传输时延也会随之增加。在不改变通信条件的情况下,要想减少带宽占用和传输时延,只能对数据进行压缩。稍微想一下,对图像的压缩不就是对矩阵的压缩吗?矩阵压缩有很多种方法,在这里我采用 k 阶奇异值分解方法。
下载可以去官网上下载,直接搜索找与你电脑对应的版本就好,国内清华镜像网站是:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/
第一版TensorFlow第一版发布于2015年11月,它可以运行在多台服务器的GPU上,同时并在其上面进行训练。2016年2月,更新版中增加了分布式与并发处理。 在本章简短的小节中,我会介绍如何使用GPU。对想深入理解这些设备是如何工作的读者,最后章节中列出了一些参考引用,本书不会讨论分布式版本中的细节,对分布式细节感兴趣的读者,最后章节中同样列出了一些参考引用。 GPU的执行环境 如果需要TensorFlow支持GPU,需要安装CudaToolkit 7.0 and CUDNN 6.5 V2。为安装这些
tensorflow程序可以通过tf.device函数来指定运行每一个操作的设备,这个设备可以是本地的CPU或者GPU,也可以是某一台远程的服务器。tensorflow会给每一个可用的设备一个名称,tf.device函数可以通过设备的名称来指定执行运算的设备,比如CPU在tensorflow中的名称为/cpu:0。在默认情况下,即使机器有多CPU,tensorflow也不会区分它们,所有CPU都使用/cpu:0作为名称。而一台机器上不同为/gpu:0,第二个GPU名称为/gpu:1,以此类推。
选自exafunction 机器之心编译 编辑:赵阳 对于并行运算,GPU 的应用效率是最高的。 在云服务中使用 GPU 是获得低延迟深度学习推理服务最经济的方式。使用 GPU 的主要瓶颈之一是通过 PCIe 总线在 CPU 和 GPU 内存之间复制数据的速度。对于许多打算用于高分辨率图像和视频处理的深度学习模型来说,简单地复制输入会大大增加系统的整体延迟,特别是当非推理任务,如解压缩和预处理也可以在 GPU 上执行时。 在这篇博文中,研究者们将展示如何在 TensorFlow 中直接通过 GPU 内存传
目前考虑进入梦寐以求的 机器学习、人工智能 等领域的学习,因此安装主流的机器学习框架 Tensorflow 迫在眉睫。
不过从我对文档的理解来看,感觉更像是添加的一种硬件后端(代理我想应该只是调用调用层面,不是底层实现,另外在Hexagon DSP的委托代理部分,文档坦言说Hexagon DSP的代理就是为了补充NNAPI,特别是针对那些NNAPI不可用DSP加速的、老旧驱动的设备,毕竟这些老旧设备也没有NNAPI这个东西,但有DSP硬件),交给模型的子图来去执行。比方原始模型的CPU执行Graph如上图。交给GPU的委托代理后,原Graph变为下面这样:
原文链接:The Good, Bad, & Ugly of TensorFlow 作者:Dan Kuster 译者:刘翔宇 审校:赵屹华 责编:周建丁(zhoujd@csdn.net) 自从TensorFlow半年前发布以来,我们一直使用它来进行日常研究和工程。在此过程中我们也学习到了很多知识。是时候写一些新体会了! 因为TensorFlow上没有很多主观的文章和有用的文档,我必须尽可能地使用我能找到的样例、教程、文档和代码片段。 善 社区参与是最重要的。 当涉及到机器学习时,很容易把注意力集中于技术
坊间有传MacOs系统不适合机器(ml)学习和深度(dl)学习,这是板上钉钉的刻板印象,就好像有人说女生不适合编程一样的离谱。现而今,无论是Pytorch框架的MPS模式,还是最新的Tensorflow2框架,都已经可以在M1/M2芯片的Mac系统中毫无桎梏地使用GPU显卡设备,本次我们来分享如何在苹果MacOS系统上安装和配置Tensorflow2框架(CPU/GPU)。
Uber近期发布了一篇文章,公开了五篇关于深度神经进化的论文,其中包括发现了遗传算法可以解决深层强化学习问题,而一些流行的方法也可替代遗传算法,如深度Q-learning和策略梯度。这项研究是Salimans等人在2017年进行的,另一种神经进化算法,即进化策略(ES)同样可以解决问题。Uber进一步阐述了以下问题:如何通过更多地探索更新智能体所带来的压力形式来改进ES;ES是如何与梯度下降联系起来的。这些研究花费巨大,通常需要720到3000个CPU,并分布在巨大,高性能的计算集群中,因此对于大多数研究人员、学生、公司和业余爱好者来说,深度神经进化研究似乎遥不可及。
近日,Reddit 上有一个热帖:为什么 PyTorch 和 TensorFlow 一样快 (有时甚至比 TensorFlow 更快)?
本文介绍在Anaconda环境中,下载并配置Python中机器学习、深度学习常用的新版tensorflow库的方法。
昨天,优步AI Lab开源了深度神经进化的加速代码。其博客上称,哪怕用户只有一台电脑(台式机),用这个代码也能训练出会打雅达利的AI。而且只需要4!小!时!
很多人觉得深度学习上手非常困难,让我们看看,对于程序员来说,着手深度学习的实践需要准备什么样的工具。 硬件 从硬件来讲,我们可能需要的计算能力,首先想到的就是CPU。除了通常的CPU架构以外,还出现
本文是《人人都能学人工智能-TensorFlow系列》文章的第一篇,这个系列会对TensorFlow的基础使用,SoftMax,交叉熵,Dropout,CNN,LSTM和NLP等内容进行系列介绍,尽量使用通俗的语言,让更多的人都能了解人工智能,了解TensorFlow。 TensorFlow是Google开源的一款人工智能学习系统。为什么叫这个名字呢?Tensor的意思是张量,代表N维数组;Flow的意思是流,代表基于数据流图的计算。把N维数字从流图的一端流动到另一端的过程,就是人工智能神经网络进行分析和处
11月9日Google发布了第二代深度学习引擎TensorFlow,引起业内广泛关注。发布后业内人士热议的一个话题是:这个引擎能否成为Google所说的平台级产品,它的基准测试究竟怎么样? Soumith 在 Github 做基准测试,在 Google TensorFlow 发布后,Soumith 很快发布了关于 TensorFlow 的基准测试报告。 【Soumith】GoogleTensorFlow的benchmark列在了这里。 我在Imagenet Winners上运行了benchmark测试程序。
TensofFlow文档已经被翻译为中文,欢迎大家学习参考使用,下面节选基本使用方法一节,完整内容可以下载或访问官方网站。 基本使用 使用 TensorFlow, 你必须明白 TensorFlow: 使用图 (graph) 来表示计算任务. 在被称之为 会话 (Session) 的上下文 (context) 中执行图. 使用 tensor 表示数据. 通过 变量 (Variable) 维护状态. 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数
在第 11 章,我们讨论了几种可以明显加速训练的技术:更好的权重初始化,批量标准化,复杂的优化器等等。 但是,即使采用了所有这些技术,在具有单个 CPU 的单台机器上训练大型神经网络可能需要几天甚至几周的时间。
关于TensorFlow 2.0 preview,在谷歌开源战略师 Edd Wilder-James 曾将公开的一封邮件就有介绍,TensorFlow 2.0 预览版将在今年正式发布,并称其是一个重大的里程碑。将会把重点放在易用性上,而 Eager Execution 将会是 TensorFlow 2.0 的核心功能。
TensorFlow简介 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理。Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程。TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统。 TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,对2011年开发的深度学习基础架构DistBelief进行了各方面的改进,它可在
本文将介绍在 Windows 计算机上配置深度学习环境的全过程,其中涉及安装所需的工具和驱动软件。出人意料的是,即便只是配置深度学习环境,任务也不轻松。你很有可能在这个过程中犯错。我个人已经很多次从头开始配置深度学习环境了,但是通常是在对程序员更友好的操作系统 Linux 中。
但在开始之前,先来看看一个最简单的使用 TensorFlow Python API 的示例代码,这样你就会对我们接下来要做的事情有所了解。
本文翻译自:Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX AVX2
对于许多科学家、工程师和开发人员来说,TensorFlow是他们的第一个深度学习框架。但indus.ai公司机器学习工程师George Seif认为,TF并不是非常的用户友好。
由于处理器性能和电池容量有限,在移动设备上使用计算密集的机器学习模型进行推断是非常耗资源的。 虽然可以采用一种加速途径:转换为定点数模型,但用户已经要求作为一种选项,为加速原始浮点模型推理提供GPU支持,而不会产生额外的复杂性和潜在的量化精度损失。
对于许多数据科学家、工程师和开发人员来说,TensorFlow是他们深度学习框架的第一选择。TensorFlow 1.0于2017年2月发布,至少可以说,它不是非常用户友好。
虽然大多数深度学习模型都是在 Linux 系统上训练的,但 Windows 也是一个非常重要的系统,也可能是很多机器学习初学者更为熟悉的系统。要在 Windows 上开发模型,首先当然是配置开发环境。Kaggle Master 及机器学习实践者 Abhinand 立足于自己的实践,给出了一种简单易行的 Windows 深度学习环境配置流程。
【磐创AI导读】:本篇文章为大家介绍了深度学习框架Keras与Pytorch对比,希望对大家有所帮助。想要获取更多的机器学习、深度学习资源,欢迎大家点击上方蓝字关注我们的公众号:磐创AI。
有了能做出惊人预测的模型之后,要做什么呢?当然是部署生产了。这只要用模型运行一批数据就成,可能需要写一个脚本让模型每夜都跑着。但是,现实通常会更复杂。系统基础组件都可能需要这个模型用于实时数据,这种情况需要将模型包装成网络服务:这样的话,任何组件都可以通过REST API询问模型。随着时间的推移,你需要用新数据重新训练模型,更新生产版本。必须处理好模型版本,平稳地过渡到新版本,碰到问题的话需要回滚,也许要并行运行多个版本做AB测试。如果产品很成功,你的服务可能每秒会有大量查询,系统必须提升负载能力。提升负载能力的方法之一,是使用TF Serving,通过自己的硬件或通过云服务,比如Google Cloud API平台。TF Serving能高效服务化模型,优雅处理模型过渡,等等。如果使用云平台,还能获得其它功能,比如强大的监督工具。
网上有很多教程,特别是简写上的写的都还算比较详细。但我自己还是遇到了几个坑,希望对深度学习有兴趣的同学遇到跟我一样的坑,希望这份记录能帮助到你。
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/75633754
今天遇到一个奇怪的现象,使用tensorflow-gpu的时候,出现内存超额~~如果我训练什么大型数据也就算了,关键我就写了一个y=W*x…显示如下图所示:
从 CNN,RNN 到 GAN 等,偏入门,但理论和实战部分都讲的还不错,承载着很多作者对深度学习整体性的思考。目前该书的中英文版包括源码见下面的链接:
今天发现一个怪现象,在训练keras时,发现不使用GPU进行计算,而是采用CPU进行计算,导致计算速度很慢。
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
得益于更快的计算,更好的存储和易于使用的软件,基于深度学习的解决方案绝对可以看到从概念验证隧道进入现实世界的曙光!看到深度学习模型已广泛应用于该行业的各个领域,包括医疗保健,金融,零售,技术,物流,食品技术,农业等!考虑到深度学习模型需要大量资源并且经常需要大量计算的事实,因此我们需要暂停片刻,并考虑一下最终用户使用模型时的推断和服务时间。
AI 科技评论按:关于深度学习的框架之争一直没有停止过。PyTorch,TensorFlow,Caffe还是Keras ?近日, 斯坦福大学计算机科学博士生Awni Hannun就发表了一篇文章,对比当前两个主流框架PyTorch和TensorFlow。 AI 科技评论编译如下: 这篇指南是我目前发现的PyTorch和TensorFlow之间的主要差异。写这篇文章的目的是想帮助那些想要开始新项目或者转换深度学习框架的人进行选择。文中重点考虑训练和部署深度学习堆栈组件时框架的可编程性和灵活性。我不会权衡速度、
AiTechYun 编辑:nanan AI和机器学习是目前流行的两个术语,有时甚至可以互换使用。然而,两项都不一样。虽然AI所涉及的机器可以执行具有人类智能特征的任务,但机器学习能够使现代计算机在没有明确编程的情况下学习。基本上,机器学习是通过模式识别和计算学习理论从AI发展而来。 谷歌、微软、Facebook、IBM和亚马逊等大公司都在大力投资自己的研发,以及收购那些在机器学习、神经网络、自然语言和图像处理等领域取得进展的初创公司。 在本文中,我们列出了5个最适合用于AI开发的开源框架: 1.Tensor
TensorFlow是相对高阶的机器学习库,用户可以方便地用它设计神经网络结构,而不必为了追求高效率的实现亲自写C++或CUDA代码。它和Theano一样都支持自动求导,用户不需要再通过反向传播求解梯度。其核心代码和Caffe一样是用C++编写的,使用C++简化了线上部署的复杂度,并让手机这种内存和CPU资源都紧张的设备可以运行复杂模型(Python则会比较消耗资源,并且执行效率不高)。除了核心代码的C++接口,TensorFlow还有官方的Python、Go和Java接口,是通过SWIG(Simplified Wrapper and Interface Generator)实现的,这样用户就可以在一个硬件配置较好的机器中用Python进行实验,并在资源比较紧张的嵌入式环境或需要低延迟的环境中用C++部署模型。SWIG支持给C/C++代码提供各种语言的接口,因此其他脚本语言的接口未来也可以通过SWIG方便地添加。不过使用Python时有一个影响效率的问题是,每一个mini-batch要从Python中feed到网络中,这个过程在mini-batch的数据量很小或者运算时间很短时,可能会带来影响比较大的延迟。现在TensorFlow还有非官方的Julia、Node.js、R的接口支持。
原题 | Surprising Sorting Tips for Data Scientists
领取专属 10元无门槛券
手把手带您无忧上云