HashMap的实现原理可以说是面试中必问的一道面试题了,它可以考察一个程序员的数据结构功底和对技术的钻研深度。Java7中HashMap的实现就是一个数组,然后数组中的每一个元素又是一个链表,这个链表的存在是为了解决哈希冲突导致的问题,就是一个元素经过哈希计算后得到元素的存储位置,但是这个位置已经有其它元素占领,也就是占领元素和新插入元素都在这个数组中的同一个位置,此时就用链表进行维护这个存储位置。也就是说Java7中HashMap使用数组加链表的形式实现的,简单点可以用下面的图比较直观的表示:
在深入了解Joern的源码以及设计的时候发现Joern其实实现了很多不常用语法,很多文档中没提到的东西,其实都有比较简洁实用的方式,但也从源码的设计中发现,其实Joern的设计理念也有很多问题,这个我们以后再写到。
R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉排序树。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。
二分搜索树是为了快速查找而生,它是一颗二叉树,每一个节点只有一个元素(值或键值对),左子树所有节点的值均小于父节点的值,右子树所有的值均大于父节点的值,左右子树也是一颗二分搜索树,而且没有键值相等的节点。它的查找、插入和删除的时间复杂度都与树高成比例,期望值是O(logn)。
前面讲到了二叉搜索树 (BST) 和二叉平衡树 (AVL) ,二叉搜索树在最好的情况下搜索的时间复杂度为 O(logn) ,但如果插入节点时,插入元素序列本身就是有序的,那么BST树就退化成一个线性表了,搜索的时间复杂度为 O(n)。 如果想要减少比较次数,就需要降低树的高度。在插入和删除节点时,要保证插入节点后不能使叶子节点之间的深度之差大于 1,这样就能保证整棵树的深度最小,这就是AVL 树解决 BST 搜索性能降低的策略。但由于每次插入或删除节点后,都可能会破坏 AVL 的平衡,而要动态保证 AVL 的平衡需要很多操作,这些操作会影响整个数据结构的性能,除非是在树的结构变化特别少的情形下,否则 AVL 树平衡带来的搜索性能提升有可能还不足为了平衡树所带来的性能损耗。 因此,引入了 2-3 树来提升效率。2-3 树本质也是一种平衡搜索树,但 2-3 树已经不是一棵二叉树了,因为 2-3 树允许存在 3 这种节点,3- 节点中可以存放两个元素,并且可以有三个子节点。
与添加节点之后的修复类似的是,TreeMap 删除节点之后也需要进行类似的修复操作,通过这种修复 来保证该排序二叉树依然满足红黑树特征。大家可以参考插入节点之后的修复来分析删除之后的修复。
红黑树是工程中一种非常重要的数据结构,大家熟悉的 HashMap 在 Java 8 就引入了红黑树的数据结构,不过实话实说,红黑树确实不容易掌握,左旋,右旋等概念让人头发发麻,本文用图文并茂的形式以期让读者彻底掌握红黑树,希望大家看了有收获,这篇文章肝了十多天,非常不易,希望大家不要白嫖,三连走起,多谢支持!
目录: 1 红黑树的介绍 2 红黑树的应用 3 红黑树的时间复杂度和相关证明 4 红黑树的基本操作(一) 左旋和右旋 5 红黑树的基本操作(二) 添加 6 红黑树的基本操作(三) 删除
我们回忆一下AVL树,它在插入和删除节点时,总要保证任意节点左右子树的高度差不超过1。正是因为有这样的限制,插入一个节点和删除一个节点都有可能调整多个节点的不平衡状态。频繁的左旋转和右旋转操作一定会影响整个AVL树的性能,除非是平衡与不平衡变化很少的情况下,否则AVL树所带来的搜索性能提升不足以弥补平衡树所带来的性能损耗。
红黑树(一) 原理和算法详细介 1 R-B Tree简介 R-B Tree,全称是Red-Black Tree,又称为“红黑树”,它一种特殊的二叉查找树。红黑树的每个节点上都有存储位表示节点的颜色,可以是红(Red)或黑(Black)。 红黑树的特性: (1)每个节点或者是黑色,或者是红色。 (2)根节点是黑色。 (3)每个叶子节点(NIL)是黑色。 [注意:这里叶子节点,是指为空(NIL或NULL)的叶子节点!] (4)如果一个节点是红色的,则它的子节点必须是黑色的。 (5)从一个节点到该节点的子
红黑树是一种自平衡的二叉查找树,其中每个节点都有一个颜色属性,可以是红色或黑色。红黑树满足以下性质:
平衡二叉树的严格定义是这样的:二叉树中任意一个节点的左右子树的高度相差不能大于 1。
插入元素,如果元素在树中存在,则替换value;如果元素不存在,则插入到对应的位置,再平衡树。
前面讲到了二叉搜索树 (BST) 和二叉平衡树 (AVL) :【漫画】以后在有面试官问你AVL树,你就把这篇文章扔给他。
之前在公司组内分享了红黑树的工作原理,今天把它整理下发出来,希望能对大家有所帮助,对自己也算是一个知识点的总结。
在前几篇文章中介绍了 2-3 树的定义以及插入删除操作。本篇文章将在 2-3 树的基础上更进一步,介绍比 2-3 树更为复杂的数据结构 2-3-4树 。之所以介绍 2-3-4 树是因为 2-3-4 树与极为重要的红黑树有着等价关系,通过先学习2-3-4 树为后面学习红黑树打下基础,增进对于红黑树的理解。
树(Tree)是一种抽象的数据结构,是一个数据的集合,集合中的数据组成了一个树状结构。例如上图,看起来像一棵倒挂的树,根朝上叶朝下。
在讲Redis集群架构之前,我们先简单讲下Redis单实例的架构,从最开始的一主N从,到读写分离,再到Sentinel哨兵机制,单实例的Redis缓存足以应对大多数的使用场景,也能实现主从故障迁移。
上一篇博客我们介绍了二叉搜索树,二叉搜索树对于某个节点而言,其左子树的节点关键值都小于该节点关键值,右子树的所有节点关键值都大于该节点关键值。二叉搜索树作为一种数据结构,其查找、插入和删除操作的时
在二叉搜索树b中查找x的过程为: 若b是空树,则搜索失败,否则: 若x等于b的根节点的数据域之值,则查找成功;否则: 若x小于b的根节点的数据域之值,则搜索左子树;否则: 若x大于b的根节点的数据域之值,则搜索右子树。
前言 ---- 红黑树顾名思义数中的节点只能是黑色或红色,是自平衡二叉树 实现思路 红黑树的规则 节点只能是红色或黑色 根节点是黑色 叶子节点都是黑色的NIL空节点 每个红色节点的两个子节点都是黑色(每个叶子节点到根节点的路径不能有两个连续的红色节点) 任意节点到叶子节点的路径包含黑色节点的数量相同 插入节点的情况 声明N代表插入节点默认红色,P代表父节点,U代表父节点的兄弟节点,G代表祖节点 根节点为空 父节点是黑色 父节点是红色,叔节点是红色,祖节点是黑色 父节点是红色,叔节点是黑色,祖节点是黑色,插入
红黑树是平衡二叉查找树的一种。为了深入理解红黑树,我们需要从二叉查找树开始讲起。 BST 二叉查找树(Binary Search Tree,简称BST)是一棵二叉树,它的左子节点的值比父节点的值要小,
每个节点或是红色,或是黑色。根节点是黑色。每个叶节点(NIL或空节点)是黑色。如果一个节点是红色的,则它的两个子节点都是黑色。从任一节点到其每个叶节点的所有路径都包含相同数目的黑色节点。要使红黑树中红色内部结点与黑色内部结点的比值最大,我们需要考虑以下策略:
红黑树,本质上来说就是一棵二叉查找树,但它在二叉查找树的基础上增加了着色和相关的性质使得红黑树相对平衡,从而保证了红黑树的查找、插入、删除的时间复杂度最坏为O(log n)。红黑树相对于AVL树来说,牺牲了部分平衡性以换取插入/删除操作时少量的旋转操作,整体来说性能要优于AVL树。
二叉查找树对于大多数情况下的查找和插入在效率上来说是没有问题的,但是他在最差的情况下效率比较低。平衡查找树的数据结构能够保证在最差的情况下也能达到lgN的效率,要实现这一目标我们需要保证树在插入完成之后始终保持平衡状态,这就是平衡查找树(Balanced Search Tree)。在一棵具有N 个节点的树中,我们希望该树的高度能够维持在lgN左右,这样我们就能保证只需要lgN次比较操作就可以查找到想要的值。不幸的是,每次插入元素之后维持树的平衡状态太昂贵。
一个Redis集群通常由多个节点(node)组成,在刚开始的时候,每个节点都是相互独立的,它们都处于一个只包含自己的集群当中,要组建一个真正可工作的集群,我们必须将各个独立的节点连接起来,构成一个包含多个节点的集群。连接各个节点的工作可以使用CLUSTER MEET命令来完成。向一个节点node发送CLUSTER MEET命令,可以让node节点与ip和port所指定的节点进行握手(handshake),当握手成功时,node节点就会将ip和port所指定的节点添加到node节点当前所在的集群中。例如:通过向节点7000发送以下命令,我们可以将节点7001添加到节点7000所在的集群里面:
前言 ---- 二叉搜索树是二叉树的一种 每个节点的左子节点一定比自身小 每个节点的右子节点一定比自身大 图片 实现思路和代码 实现二叉搜索树类 定义内部节点类 包含以下属性 key节点值 left指向左子节点 right指向右子节点 定义root属性表示根节点 function BinarySearchTree() { this.root = null function Node(key) { this.key = key this.left = null th
网上关于红黑树的博文很多,但是多是上来即讲定义,未说其所以然,难以理解且无所营养,甚者示例图有误且概念模糊的比比即是;
集群(cluster)是Redis提供的分布式数据库解决方案,集群通过分片(sharding)来进行数据共享,并提供数据复制(replication)和故障转移(failover)等功能。下面介绍下Cluster的执行流程。
我们常用父(parent)、子(child)和同胞(sibling)等术语来描述这些关系。父节点拥有子节点。同级的子节点被称为同胞(兄弟或姐妹)。
(1)测试类中我们定义类一个arr数组,使用for循环生成节点添加到树中,该add()方法的下面会讲到。
从逻辑结构角度来看,前面说的链表、栈、队列都是线性结构;而今天要了解的“二叉树”属于树形结构。
在 class MyBuilderSupport extends BuilderSupport 类中维护一个 Map 集合 , 该 Map 集合用于存储 上一篇博客 【Groovy】自定义 Xml 生成器 BuilderSupport ( 构造 Xml 节点类 | 封装节点名称、节点值、节点属性、子节点 | 将封装的节点数据转为 Xml 字符串 ) 中封装的 XmlNode 节点 ;
前情提要 红黑树是AVL树里最流行的变种,有些资料甚至说自从红黑树出来以后,AVL树就被放到博物馆里了。红黑树是否真的有那么优秀,我们一看究竟。红黑树遵循以下5点规则,需要我们理解并熟记。 规则: 1.树节点要么是红的,要么是黑的 2.树的根节点是黑的 3.树的叶节点链接的空节点都是黑的,即nullNode为黑 4.红色节点的左右孩子必须是黑的 5.从某节点到null节点所有路径都包含相同数目的黑节点 正是因为作为二叉查找树的红黑树满足这些性质,才使得树的节点是相对平衡的。由归纳法得知,如果一颗子树的
前言 我们要实现一个线程安全的队列有两种实现方式一种是使用阻塞算法,另一种是使用非阻塞算法。使用阻塞算法的队列可以用一个锁(入队和出队用同一把锁)或两个锁(入队和出队用不同的锁)等方式来实现,而非阻塞的实现方式则可以使用循环CAS的方式来实现,本节我们就来研究下ConcurrentLinkedQueue是如何保证线程安全的同时又能高效的操作的。 1.ConcurrentLinkedQueue的结构 ConcurrentLinkedQueue是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行
二叉树知识点回忆以及整理这篇文章中我们说过“二叉树是一个简单的二分查找,但其性能取决于二叉树的层数”。
本文主要讲解使用Zookeeper自带的客户端zkCli.sh来进行一些Zookeeper的一些基本操作,如创建删除节点等。
通过上述机制,Redis集群在面临网络分区时能够保持数据的一致性和可用性。主节点选举和从节点复制确保在分区期间数据的不丢失和一致性,而分区解决机制则在网络分区解决后重新连接分区节点,确保整个集群的正常运行。
xpath即为XML路径语言(XML Path Language),是由国际标准化组织W3C指定的,一种用来确定XML文档节点位置的语言
此时,比如我已经获取到了C节点,那么我想要获取到C节点的前一个节点,就需要再次遍历该链表,且时间复杂度是O(n)。那么有没有一个好的方案可以便捷地获取到C的前一个节点呢,答案是使用双向链表。
《Redis设计与实现》读书笔记(三十) ——Redis集群节点复制与故障转移 (原创内容,转载请注明来源,谢谢) 1、概述 redis集群的节点,分为主节点和从节点,主节点负责处理
双亲结点或父节点(parent):若一个节点含有子节点,则这个节点称为其子节点的父节点
《Java集合详解系列》是我在完成夯实Java基础篇的系列博客后准备开始写的新系列。
在 Redis 的主从架构中,由于主从模式是读写分离的,如果主节点(master)挂了,那么将没有主节点来服务客户端的写操作请求,也没有主节点给从节点(slave)进行数据同步了。
redis sentinel(redis哨兵) 一、redis哨兵简介 特殊的redis节点,不是数据节点。用来监控数据节点,如果数据节点故障,能够对该节点进行下线标识,如果故障的节点是主节点,sentinel可以实现自动的故障切换。
而二叉排序树的查找类似二分查找,而插入类似链表,相较以上三种结构可以较好的平衡查找和插入效率
假如我们的目标是求点1到点6的所有路径,可以采用深度优先搜索法: 先将节点1加入路径,然后从1的后置节点中选择一个节点,1有两个后置节点,分别是2和3; 这里先选择2,路径为[1,2]; 然后再从2的后置节点中选择,只能选择4,路径为[1,2,4]; 从4的后置节点中选择5,路径为[1,2,4,5]; 从5的后置节点中选择6,路径为[1,2,4,5,6]形成一条完整的从1到6的路径。
领取专属 10元无门槛券
手把手带您无忧上云