首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

sql bigquery:从嵌套字段中提取":“后的字符串

在BigQuery中,你可以使用REGEXP_EXTRACT函数来从嵌套字段中提取":"后的字符串。假设你有一个嵌套字段nested_field,其中包含形如key:value的字符串,你可以使用以下查询:

代码语言:javascript
复制
SELECT
  REGEXP_EXTRACT(nested_field, r':([^:]+)$') AS extracted_value
FROM
  your_table;

这里,your_table是你要查询的表名,nested_field是包含嵌套字段的列名。REGEXP_EXprimir函数使用正则表达式r':([^:]+)$'来匹配":"后的字符串。([^:]+)表示匹配一个或多个非":"字符,$表示匹配字符串的末尾。

如果你需要处理多层嵌套的JSON数据,可以使用JSON_EXTRACT_SCALARJSON_EXTRACT函数。例如,假设你的嵌套字段是一个JSON对象,如下所示:

代码语言:javascript
复制
{
  "key1": "value1",
  "key2": "value2"
}

你可以使用以下查询提取key1的值:

代码语言:javascript
复制
SELECT
  JSON_EXTRACT_SCALAR(nested_field, '$.key1') AS extracted_value
FROM
  your_table;

这里,$.key1是JSON路径,表示要提取的键。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

SQL 提取字符串中的字母

问题描述 我们在进行数据处理时,可能经常需要对不同类型的字符进行抽取。比如一些产品型号,批次之类的会使用字母表示,这个时候该如何提取这些数据呢?...问题分析 不管是字母,还是数字,我们都可以使用相应的匹配规则来抽取出来。但是由于字母是混合在字符串中,我们需要循环对其进行匹配。 具体解法 我们创建一个函数,通过调用这个函数来找出所有的字母。...expression里第一次出现的位置,起始值从1开始算。..., length ,expression2 ) 字符串expression1 从start位置开始,删除长度为length的字符后,在start后面填充expression2。...例如 SELECT STUFF('SQL,开发',4,1,'数据库') 结果: 上面的示例是将","删除后,替换成了"数据库" 测试函数 理解完上面的函数,我们来测试一下我们自定义的函数GET_LETTER

14510
  • 用MongoDB Change Streams 在BigQuery中复制数据

    幸运的是Big Query同时支持重复的和嵌套的字段。 根据我们的研究,最常用的复制MongoDB数据的方法是在集合中使用一个时间戳字段。...把所有的变更流事件以JSON块的形式放在BigQuery中。我们可以使用dbt这样的把原始的JSON数据工具解析、存储和转换到一个合适的SQL表中。...这个表中包含了每一行自上一次运行以来的所有状态。这是一个dbt SQL在生产环境下如何操作的例子。 通过这两个步骤,我们实时拥有了从MongoDB到Big Query的数据流。...我们发现最主要的问题是需要用SQL写所有的提取操作。这意味着大量额外的SQL代码和一些额外的处理。当时使用dbt处理不难。...另外一个小问题是BigQuery并不天生支持提取一个以JSON编码的数组中的所有元素。 结论 对于我们来说付出的代价(迭代时间,轻松的变化,简单的管道)是物超所值的。

    4.1K20

    教程 | 没错,纯SQL查询语句可以实现神经网络

    但本文从另一角度嵌套SQL查询语句而构建了一个简单的三层全连接网络,虽然由于语句的嵌套过深而不能高效计算,但仍然是一个非常有意思的实验。 ?...这些神经网络训练的步骤包含前向传播和反向传播,将在 BigQuery 的单个SQL查询语句中实现。当它在 BigQuery 中运行时,实际上我们正在成百上千台服务器上进行分布式神经网络训练。...也就是说,这个有趣的项目用于测试 SQL 和 BigQuery 的限制,同时从声明性数据的角度看待神经网络训练。这个项目没有考虑任何的实际应用,不过最后我将讨论一些实际的研究意义。...如前所述,我们将整个训练作为单个 SQL 查询语句来实现。在训练完成后,通过 SQL 查询语句将会返回参数的值。正如你可能猜到的,这将是一个层层嵌套的查询,我们将逐步构建以准备这个查询语句。...我们将会从最内层的子查询开始,然后逐个增加嵌套的外层。 前向传播 首先,我们将权重参数 W 和 W2 设为服从正态分布的随机值,将权重参数 B 和 B2 设置为 0。

    2.2K50

    全新ArcGIS Pro 2.9来了

    连接后,可以在Google BigQuery 或 Snowflake 中的表上启用特征分箱, 以绘制不同比例的聚合特征。这使得以可用格式查看大量特征成为可能。...可以创建查询图层以将数据添加到地图以进行更深入的分析。创建查询层时,可以创建物化视图将SQL查询存储在数据仓库中,以提高查询性能。...数据工程 使用“字段统计转表”工具将字段面板中的统计数据导出到单个表或每个字段类型(数字、文本和日期)的单独表。可以从统计面板中的菜单按钮访问该工具 。...从图层属性表或其字段视图打开数据工程视图。 直接从字段面板访问属性表字段。 取消统计计算。 将一个或多个字段从字段面板拖到接受输入字段的地理处理工具参数中。...字段面板显示图层中字段数的计数,以及与过滤器或搜索条件匹配的字段数的计数。 还不是 ArcGIS Pro 用户?

    3K20

    如何用纯SQL查询语句可以实现神经网络?

    但本文从另一角度嵌套SQL查询语句而构建了一个简单的三层全连接网络,虽然由于语句的嵌套过深而不能高效计算,但仍然是一个非常有意思的实验。 ?...这些神经网络训练的步骤包含前向传播和反向传播,将在 BigQuery 的单个SQL查询语句中实现。当它在 BigQuery 中运行时,实际上我们正在成百上千台服务器上进行分布式神经网络训练。...也就是说,这个有趣的项目用于测试 SQL 和 BigQuery 的限制,同时从声明性数据的角度看待神经网络训练。这个项目没有考虑任何的实际应用,不过最后我将讨论一些实际的研究意义。...如前所述,我们将整个训练作为单个 SQL 查询语句来实现。在训练完成后,通过 SQL 查询语句将会返回参数的值。正如你可能猜到的,这将是一个层层嵌套的查询,我们将逐步构建以准备这个查询语句。...我们将会从最内层的子查询开始,然后逐个增加嵌套的外层。 前向传播 首先,我们将权重参数 W 和 W2 设为服从正态分布的随机值,将权重参数 B 和 B2 设置为 0。

    3K30

    1年将超过15PB数据迁移到谷歌BigQuery,PayPal的经验有哪些可借鉴之处?

    我们将 BigQuery 中的数据保存为美国的多区域数据,以便从美国的其他区域访问。我们在数据中心和 Google Cloud Platform 中离分析仓库最近的区域之间实现了安全的私有互联。...DDL(数据定义语言)和 SQL 转换 因为我们要使用新技术将数据用户带到云端,我们希望减轻从 Teradata 过渡到 BigQuery 的阵痛。...它的转译器让我们可以在 BigQuery 中创建 DDL,并使用该模式(schema)将 DML 和用户 SQL 从 Teradata 风味转为 BigQuery。...源上的数据操作:由于我们在提取数据时本地系统还在运行,因此我们必须将所有增量更改连续复制到 BigQuery 中的目标。对于小表,我们可以简单地重复复制整个表。...同样,在复制到 BigQuery 之前,必须修剪源系统中的字符串值,才能让使用相等运算符的查询返回与 Teradata 相同的结果。 数据加载:一次性加载到 BigQuery 是非常简单的。

    4.7K20

    Apache Hudi 0.11 版本重磅发布,新特性速览!

    Spark SQL改进 用户可以使用非主键字段更新或删除 Hudi 表中的记录。 现在通过timestamp as of语法支持时间旅行查询。(仅限 Spark 3.2+)。...Flink 集成改进 在 0.11.0 中,同时支持 Flink 1.13.x 和 1.14.x。 支持复杂的数据类型,例如Map和Array。复杂数据类型可以嵌套在另一个组合数据类型中。...与默认的 Flink 基于状态的索引不同,桶索引是在恒定数量的桶中。指定 SQL 选项 index.type 为 BUCKET 以启用它。...集成 Google BigQuery 在 0.11.0 中,Hudi 表可以作为外部表从 BigQuery 中查询。...HiveSchemaProvider 在 0.11.0 中,添加了org.apache.hudi.utilities.schema.HiveSchemaProvider用于从用户定义的Hive表中获取Schema

    3.5K30

    BigQuery:云中的数据仓库

    紧接着,在完成MapReduce / HDFS实例后,又必须拆解所有内容,以避免为长时间运行的虚拟机支付大笔资金。...当您从运营数据存储中创建周期性的固定时间点快照时,(使用)SCD模型很常见。例如,季度销售数据总是以某种时间戳或日期维度插入到DW表中。...这实际上是Dremel和BigQuery擅长的,因为它为您提供了SQL功能,例如子选择(功能),这些功能在NoSQL类型的存储引擎中通常找不到。...在FCD中,您经常从"运营数据存储"和"通过ETL获取频繁或接近实时的更改"中,将新数据移至DW中。...由于您可以执行上述的基于生效日期的子选择,因此现在没有理由为每个记录维护生效/终止( effective/termination)日期字段。您只需要生效日期字段。

    5K40

    谷歌BigQuery ML VS StreamingPro MLSQL

    前言 今天看到了一篇 AI前线的文章谷歌BigQuery ML正式上岗,只会用SQL也能玩转机器学习!。正好自己也在力推 StreamingPro的MLSQL。 今天就来对比下这两款产品。...MLSQL Run as Service很简单,你可以直接在自己电脑上体验: Five Minute Quick Tutorial BigQuery ML 则是云端产品,从表象上来看,应该也是Run...ML 也对原有的SQL语法做了增强,添加了新的关键之,但是总体是遵循SQL原有语法形态的。...完成相同功能,在MLSQL中中的做法如下: select arr_delay, carrier, origin, dest, dep_delay, taxi_out, distance from db.table...对应的,训练完成后,你可以load 数据查看效果,结果类似这样: +--------------------+--------+--------------------+----------------

    1.4K30

    使用Tensorflow和公共数据集构建预测和应用问题标签的GitHub应用程序

    这些数据存储在BigQuery中,允许通过SQL接口快速检索!获取这些数据非常经济,因为当第一次注册帐户时,Google会为您提供300美元,如果已经拥有一个,则成本非常合理。...由于数据是JSON格式,取消嵌套此数据的语法可能有点不熟悉。使用JSON_EXTRACT函数来获取需要的数据。以下是如何从问题有效负载中提取数据的示例: ?...甚至可以从BigQuery中的公共存储库中检索大量代码。...签署JWT后使用它作为应用程序安装进行身份验证。在作为应用程序安装进行身份验证后,将收到一个安装访问令牌,使用该令牌与REST API进行交互。...原始数据的探索以及数据集中所有字段的描述也位于笔记本中。 https://console.cloud.google.com/bigquery?

    3.2K10

    一日一技:如何统计有多少人安装了 GNE?

    从服务帐号列表中,选择新的服务帐号。 在服务帐号名称字段中,输入一个名称。 从角色列表中,选择BigQuery,在右边弹出的多选列表中选中全部与 BigQuery 有关的内容。如下图所示。...下面密钥类型选为JSON,点击“创建”,浏览器就会下载一个 JSOn 文件到你的电脑上。 然后,使用 pip 安装一个名为google-cloud-bigquery的第三方库。...SQL 语句,pypi 上面所有的第三方库的安装信息都存放在了the-psf.pypi.downloads*这个库中,其中的星号是通配符,对应了%Y%m%d格式的年月日,每天一张表。...file.project字段用于筛选库的名字,details.installer.name字段用于筛选安装方式,这里我们只看通过pip安装的。...在上面代码的 notify 函数中,我直接打印了 message 参数。但实际使用中,我把这个运算结果通过 Telegram 每天早上9点发送给我,运行效果如下图所示:

    1.3K20

    Apache Hudi 0.9.0 版本发布

    这个自动升级步骤只会在每个Hudi表中发生一次,因为hoodie.table.version将在升级完成后在属性文件中更新。...这需要从0.9.0的hudi-cli二进制/脚本执行。 在这个版本中,我们添加了一个新的框架来跟踪代码中的配置属性,不再使用包含属性名和值的字符串变量。这一举动帮助我们自动化配置文档的生成等等。...用户可以选择删除用于生成分区路径的字段(hoodie.datasource.write.drop.partition.columns),以支持使用BigQuery系统查询Hudi快照。...DeltaStreamer的改进 JDBC Source[13]可以采用提取 SQL 语句并从支持 JDBC 的源中增量获取数据。这对于例如从 RDBMS 源读取数据时很有用。...SQLSource[14]使用 Spark SQL 语句从现有表中提取数据,对于基于 SQL 的简单回填用例非常有用,例如:过去 N 个月只回填一列。

    1.3K20

    构建端到端的开源现代数据平台

    • 数据转换:一旦数据进入数据仓库(因此完成了 ELT 架构的 EL 部分),我们需要在它之上构建管道来转换,以便我们可以直接使用它并从中提取价值和洞察力——这个过程是我们 ELT 中的 T,它以前通常由不易管理的大的查询...SQL 或复杂的 Spark 脚本组成,但同样在这“第三次浪潮”中我们现在有了必要的工具更好地管理数据转换。...[17] 构建一个新的 HTTP API 源,用于从您要使用的 API 中获取数据。...• Destination:这里只需要指定与数据仓库(在我们的例子中为“BigQuery”)交互所需的设置。...建立连接后,您可以试验不同的图表类型、构建仪表板,甚至可以利用内置 SQL 编辑器向您的 BigQuery 实例提交查询。

    5.5K10

    SQL优化

    MySQL常见的优化手段分为下面几个方面: SQL优化、设计优化,硬件优化等,其中每个大的方向中又包含多个小的优化点 SQL优化 此优化方案指的是通过优化 SQL 语句以及索引来提高 MySQL 数据库的运行效率...,那它没有必要再回表查询了,这就叫覆盖索引 例如对于如下查询: select name from test where city='上海' 复制代码 我们将被查询的字段建立到联合索引中,这样查询结果就可以直接从索引中获取...= 或者 操作符 SQL中,不等于操作符会导致查询引擎放弃索引索引,引起全表扫描,即使比较的字段上有索引 解决方法:通过把不等于操作符改成or,可以使用索引,避免全表扫描 例如,把column...要尽量避免使用 select *,而是查询需要的字段,这样可以提升速度,以及减少网络传输的带宽压力 优化子查询 尽量使用 Join 语句来替代子查询,因为子查询是嵌套查询,而嵌套查询会新创建一张临时表...查询出比较慢的 SQL 语句,然后再通过 Explain 来查询 SQL 语句的执行计划,最后分析并定位出问题的根源,再进行处理 慢查询日志指的是在 MySQL 中可以通过配置来开启慢查询日志的记录功能

    76630

    Mybatis sql映射文件浅析 Mybatis简介(三)

    额外的馈赠-语法糖 在编程实践中,经常有一些公共的方法或者处理逻辑,我们通常将他们提取单独封装,以便提高代码复用程序 那么,对于SQL的编写呢?...Mybatis也提供了封装提取的手段---SQL元素标签 sql id="xxx"> ...........,他要么是用于使用时确定入参或者数据库字段的具体类型,如javaType或者jdbcType 要么就是在字段处理过程中增加的一些处理所需要的信息,比如是不是需要按照自定义处理器处理后在执行到数据库?...通常我们使用#{}的格式进行字符串处理,这样可以安全,是通常的首选,但是如果你就是想直接插入一个字符串到SQL中,可以使用${},不过很显然,$的使用你要非常慎重 ResultMap-别名映射 Mybatis...,此处说的重用非解耦后的复用 在ResultMap中,我们通过id或者result 将数据库字段和实体类中的属性名进行对应 列名和属性名的对应,以及列名和属性名全部都是固定的了,如下图所示,username

    1K40

    详细对比后,我建议这样选择云数据仓库

    其中,从多种来源提取数据、把数据转换成可用的格式并存储在仓库中,是理解数据的关键。 此外,通过存储在仓库中的有价值的数据,你可以超越传统的分析工具,通过 SQL 查询数据获得深层次的业务洞察力。...Google Analytics 360 收集第一方数据,并提取到 BigQuery。该仓储服务随后将机器学习模型应用于访问者的数据中,根据每个人购买的可能性向其分配一个倾向性分数。...从 T-SQL、Python 到 Scala 和 .NET,用户可以在 Azure Synapse Analytics 中使用各种语言来分析数据。...举例来说,加密有不同的处理方式:BigQuery 默认加密了传输中的数据和静态数据,而 Redshift 中需要显式地启用该特性。 计费提供商计算成本的方法不同。...从 Redshift 和 BigQuery 到 Azure 和 Snowflake,团队可以使用各种云数据仓库,但是找到最适合自己需求的服务是一项具有挑战性的任务。

    5.7K10

    7大云计算数据仓库

    对于希望使用标准SQL查询来分析云中的大型数据集的用户而言,BigQuery是一个合理的选择。...•与BigQuery ML的集成是一个关键的区别因素,它将数据仓库和机器学习(ML)的世界融合在一起。使用BigQuery ML,可以在数据仓库中的数据上训练机器学习工作负载。...对于处理分析工作负载的组织来说,IBM Db2 Warehouse是一个很好的选择,它可以从平台的集成内存数据库引擎和Apache Spark分析引擎中获益。...•现有的微软用户可能会从Azure SQL数据仓库中获得最大的收益,因为它跨Microsoft Azure公共云以及更重要的是用于数据库的SQL Server具有多种集成。...•虽然支持Oracle自己的同名数据库,但用户还可以从其他数据库和云平台(包括Amazon Redshift)以及本地对象数据存储中迁移数据。

    5.4K30

    谷歌发布 Hive-BigQuery 开源连接器,加强跨平台数据集成能力

    它还支持使用 Storage Read API 流和 Apache Arrow 格式从 BigQuery 表中快速读取数据。...图片来源:谷歌数据分析博客 根据谷歌云的说法,Hive-BigQuery 连接器可以在以下场景中为企业提供帮助:确保迁移过程中操作的连续性,将 BigQuery 用于需要数据仓库子集的需求,或者保有一个完整的开源软件技术栈...ANSI 的 SQL 语法。...,用于读写 Cloud Storage 中的数据文件,而 Apache Spark SQL connector for BigQuery 则实现了 Spark SQL Data Source API,将...但是,开发人员仍然可以使用 BigQuery 支持的时间单位列分区选项和摄入时间分区选项。 感兴趣的读者,可以从 GitHub 上获取该连接器。

    34620
    领券