Kudu是cloudera开源的运行在hadoop平台上的列式存储系统,拥有Hadoop生态系统应用的常见技术特性,运行在一般的商用硬件上,支持水平扩展,高可用。
使用SparkSQL操作Kudu,这里需要导入Kudu与SparkSQL整合的包和SparkSQL的包,在Maven中导入如下依赖:
1、kudu整体介绍 Kudu是cloudera开源的运行在hadoop平台上的列式存储系统,拥有Hadoop生态系统应用的常见技术特性,运行在一般的商用硬件上,支持水平扩展,高可用。 kudu的使用场景: Strong performance for both scan and random access to help customers simplify complex hybrid architectures(适用于那些既有随机访问,也有批量数据扫描的复合场景) High CPU efficienc
Kudu从 1.0.0 版本开始通过Data Source API与Spark 集成。kudu-spark使用--packages选项包含依赖项。如果将Spark与Scala 2.10 一起使用,需要使用 kudu-spark_2.10 。从 Kudu1.6.0开始不再支持Spark 1,如果要使用Spark1与Kudu集成,最高只能到Kudu1.5.0。
KUDU 支持用户对一个表指定一个范围分区规则和多个 Hash 分区规则,如下图:
在构建本地数据中心的时候,出于Apache Kudu良好的性能和兼备OLTP和OLAP的特性,以及对Impala SQL和Spark的支持,很多用户会选择Impala / Spark + Kudu的技术栈。但是由于Kudu对本地存储的依赖,导致无法支持的数据高可用和弹性扩缩容,以及社区的逐渐不活跃,越来越多的用户,开始迁移到云上的Trino / Spark + Hudi 技术栈,本文通过一个实际的例子,来看一下迁移过程中发生的代码的重构和数据的迁移。
定义表时要注意的是Kudu表选项值。你会注意到在指定组成范围分区列的列名列表时我们调用“asJava”方 法。这是因为在这里,我们调用了Kudu Java客户端本身,它需要Java对象(即java.util.List)而不是Scala的List对 象;(要使“asJava”方法可用,请记住导入JavaConverters库。) 创建表后,通过将浏览器指向http//master主机名:8051/tables
Kudu支持许多DML类型的操作,其中一些操作包含在Spark on Kudu集成. 包括:
在CDH的默认安装包中,是不包含Kafka,Kudu和Spark2的,需要单独下载特定的Parcel包才能安装相应服务。本文档主要描述在离线环境下,在CentOS6.5操作系统上基于CDH5.12.1集群,使用Cloudera Manager通过Parcel包方式安装Kudu、Spark2和Kafka的过程。
在集群中访问Kudu的方式有多种,可以通过Impala使用JDBC的方式,也可以通过Kudu提供的Client API方式,参考Fayson前面的文章《如何使用Java API访问CDH的Kudu》和《如何使用Java代码访问Kerberos环境下的Kudu》。在做Spark开发时也有访问Kudu的需求,Kudu API访问是一种方式,这里Fayson使用KuduContext实现对Kudu的读写操作。
参考:《Kudu设计要点面面观(上篇)》,本文适用知识共享-署名-相同方式共享(CC-BY-SA)3.0协议。
最近在招聘要求下突然看到了Apache kudu 于是花了几天时间研究了下,下面简单的给大家介绍下 记得收藏。
在前面的文章Fayson介绍了在Kerberos环境下《Spark2Streaming读Kerberos环境的Kafka并写数据到Kudu》,本篇文章Fayson主要介绍如何使用Spark2 Streaming访问非Kerberos环境的Kafka并将接收到的数据写入Kudu。
就是说, 我们对待处理列表, 正常我们处理它 需要 先对其进行map操作, 然后再进行flatten操作 这样两步操作才可以得到我们想要的结果.
虽然我们可以通过上面显示的KuduContext执行大量操作,但我们还可以直接从默认数据源本身调用读/写API。要设置读取,我们需要为Kudu表指定选项,命名我们要读取的表以及为表提供服务的Kudu集群的Kudu主服务器列表。
目录 Spark操作Kudu Native RDD Spark操作Kudu Native RDD Spark与Kudu的集成同时提供了kudu RDD 代码示例 val columnsList = List("id", "name", "age", "sex") val rowRDD: RDD[Row] = kuduContext.kuduRDD(sc, TABLE_NAME, columnsList) rowRDD.foreach(println(_)) sc.stop() //session.re
分析用例几乎只使用查询表中列的子集,并且通常在广泛的行上聚合值。面向列的数据极大地加速了这种访问模式。操作用例更有可能访问一行中的大部分或所有列,并且可能更适合由面向行的存储提供服务。Kudu 选择了面向列的存储格式,因为它主要针对分析用例。
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 在前面的文章Fayson介绍了一些关于SparkStreaming的示例《如何使用Spark Streaming读取HBase的数据并写入到HDFS》、《SparkStreaming读Kafka数据写HBase》和《SparkStreaming读Kafka数据写Kudu》以上文章
本项目需要实现:将广告数据的json文件放置在HDFS上,并利用spark进行ETL操作、分析操作,之后存储在kudu上,最后设定每天凌晨三点自动执行广告数据的分析存储操作。
温馨提示:要看高清无码套图,请使用手机打开并单击图片放大查看。 Fayson的github: https://github.com/fayson/cdhproject 提示:代码块部分可以左右滑动查看噢 1.文档编写目的 ---- 在前面的文章Fayson介绍过《SparkStreaming读HBase写HDFS》及《SparkingStreaming读Kafka写Kudu》,本篇文章Fayson主要介绍使用Scala语言开发一个SparkStreaming应用读取Kafka数据并写入Kudu。本文的数据流
目录 Java代码操作Kudu 一、构建maven工程 二、导入依赖 三、创建包结构 四、初始化方法 五、创建表 六、插入数据 七、查询数据 八、修改数据 九、删除数据 十、修改表 十一、删除表 Java代码操作Kudu 一、构建maven工程 二、导入依赖 <repositories> <repository> <id>cloudera</id>
目录 实时ETL模块开发准备 一、编写配置文件 二、创建包结构 三、编写工具类加载配置文件 实时ETL模块开发准备 一、编写配置文件 在公共模块的resources目录创建配置文件:config.properties # CDH-6.2.1 bigdata.host=node2 # HDFS dfs.uri=hdfs://node2:8020 # Local FS local.fs.uri=file:// # Kafka kafka.broker.host=node2 kafka.broker.port=9
你现在可以在Cloudera Enterprise 6.3中使用OpenJDK 11,在集群中安装OpenJDK 11时,默认使用G1GC为CDH大多数服务作为垃圾回收机制,这可能需要进行调优以避免内存过量使用。
TabletServer 在开始拒绝所有传入的写入之前可以消耗的最大内存量:memory_limit_h
1:拷贝”\资料\oracle连接驱动ojdbc8-12.2.0.1.jar”文件到本地磁盘任意目录
当您将 Kudu 数据从 CDH 迁移到 CDP 时,您必须使用 Kudu 备份工具来备份和恢复您的 Kudu 数据。
通过 spark sql 读取 kudu 数据,由于 kudu 表 只有 6 个 tablet ,所以 spark 默认只能启动 6 个 task,读取 kudu 数据,通过界面可以看到 kudu 的 scan 维持在 143M/s ,想要增大 spark 读取 kudu 的效率。 ![在这里插入图片描述](https://img-blog.csdnimg.cn/2020051118163413.png)
10月26日,Kudu在其社区官宣了Kudu 1.8.0的正式发布。以下是主要的一些更新内容:
Apache Hudi代表Hadoop Upserts anD Incrementals,管理大型分析数据集在HDFS上的存储。Hudi的主要目的是高效减少摄取过程中的数据延迟。由Uber开发并开源,HDFS上的分析数据集通过两种类型的表提供服务:读优化表(Read Optimized Table)和近实时表(Near-Real-Time Table)。
Apache Hudi填补了在DFS上处理数据的巨大空白,并可以和一些大数据技术很好地共存。然而,将Hudi与一些相关系统进行对比,来了解Hudi如何适应当前的大数据生态系统,并知晓这些系统在设计中做的不同权衡仍将非常有用。
每个主题都需要拉宽操作将拉宽后的数据存储到kudu表中,同时指标计算的数据最终也需要落地到kudu表,因此提前将各个主题相关表名定义出来
Hadoop生态系统发展到现在,存储层主要由HDFS和HBase两个系统把持着,一直没有太大突破。在追求高吞吐的批处理场景下,我们选用HDFS,在追求低延迟,有随机读写需求的场景下,我们选用HBase,那么是否存在一种系统,能结合两个系统优点,同时支持高吞吐率和低延迟呢?
前置文章参考《0585-Cloudera Enterprise 6.2.0发布》和《0589-Cloudera Manager6.2的新功能》
统计省份、城市数量分布情况,按照provincename与cityname分组统计
Cloudera于7月31日宣布正式发布CDH6.3,此版本提供了许多新功能,改进了可用性,性能提升以及对更现代的Java和身份管理基础设施软件的支持(Free IPA)。
数据仓库里面存储引擎是非常重要的,存储引擎的好坏,基本决定了整个数仓的基础。 kudu目标 cloudera公司最近发布了一个kudu存储引擎。按照cloudera的想法,kudu的出现是为了解决,hbase,parquet不能兼顾分析和更新的需求,所以需要一个新的存储引擎可以同时支持高吞吐的分析应用以及少量更新的应用。cloudera 的设计目标是:(http://blog.cloudera.com/blog/2015/09/kudu-new-apache-hadoop-storage-for-fast
干线运输指的是运输的主干线, 在主干线上有最大的运力,一般快件的运行都是由支线去向主干线去汇集, 由主干线运输过去
在2017年,当Kudu作为CDH的一部分首次引入时,它不支持任何形式的授权,因此仅满足空白且不需要安全的用例。在CDH 5.11(Kudu 1.3.0)中添加了粗粒度的授权和身份验证,这使得可以仅对可以应用Apache Sentry策略的Apache Impala进行访问限制,从而启用了更多的用例。接着,Sentry直接集成在CDH 6.3中,使客户可以使用任何查询方法以相同的特权访问Kudu。最后,在CDP Private Cloud Base 7.1.5和7.2.6中,Kudu与Ranger完全集成。在本文中,我们将介绍其工作原理以及设置方法。
本文档主要介绍在cdh集成kerberos情况下,sparkstreaming怎么消费kafka数据,并存储在kudu里面
首先感谢 spark君 细心的整理,下文是早些时候在群里关于一个SparkSQL条件下推问题的实录,由于刚刚发表了一篇文章(Flink SQL vs Spark SQL),正好对这块理解还是热乎的,所以我作为D君,我也混水摸了一下鱼。
北京时间2018年12月19日,Cloudera正式发布Cloudera Enterprise 6.1.0,上次发布CDH6.0是8月30日,差不多过去了3个多月的时间,参考Fayson之前的文章《Cloudera Enterprise 6正式发布》。从CDH6.0到CDH6.1是一次minor version的更新,但更新内容较多,在开始接下来的细化功能讨论前,我们先看看几项重点更新的内容:
腾讯云数据仓库PostgreSql TDSQL,PingCAP的TiDB,阿里的OceanBase,华为云DWS,都是HTAP的业内常用数仓,可以一站式解决需求。
https://kudu.apache.org/2019/03/19/testing-apache-kudu-applications-on-the-jvm.html
如果您是CDH或HDP用户,则除了从CDH和HDP版本转移到CDP的功能之外,还可以查看CDP私有云基础版中可用的新功能。
CDH从5.10开始,打包集成Kudu1.2,并且Cloudera正式提供支持。这个版本开始Kudu的安装较之前要简单很多,省去了Impala_Kudu,安装完Kudu,Impala即可直接操作Kudu。
问题导读 1.什么是Hudi? 2.Hudi对HDFS可以实现哪些操作? 3.Hudi与其它组件对比有哪些特点? 前两天我们About云群大佬公司想了解Hudi ,并上线使用。Hudi 或许大家了解的比较少,这里给大家介绍下Hudi这个非常实用和有潜力的组件。 Hudi是在HDFS的基础上,对HDFS的管理和操作。支持在Hadoop上执行upserts/insert/delete操作。这里大家可能觉得比较抽象,那么它到底解决了哪些问题? Hudi解决了我们那些痛点 1.实时获取新增数据 你是否遇到过这样的问题,使用Sqoop获取Mysql日志或则数据,然后将新增数据迁移到Hive或则HDFS。对于新增的数据,有不少公司确实是这么做的,比较高级点的,通过Shell调用Sqoop迁移数据实现自动化,但是这里面有很多的坑和难点,相对来说工作量也不少,那么有没有更好的解决办法那?---Hudi可以解决。Hudi可以实时获取新数据。 2.实时查询、分析 对于HDFS数据,我们要查询数据,是需要使用MapReduce的,我们使用MapReduce查询,这几乎是让我们难以接受的,有没有近实时的方案,有没有更好的解决方案--Hudi。 什么是Hudi Apache Hudi代表Hadoop Upserts anD Incrementals,管理大型分析数据集在HDFS上的存储。Hudi的主要目的是高效减少摄取过程中的数据延迟。由Uber开发并开源,HDFS上的分析数据集通过两种类型的表提供服务:读优化表(Read Optimized Table)和近实时表(Near-Real-Time Table)。 读优化表的主要目的是通过列式存储提供查询性能,而近实时表则提供实时(基于行的存储和列式存储的组合)查询。 Hudi是一个开源Spark库(基于Spark2.x),用于在Hadoop上执行诸如更新,插入和删除之类的操作。它还允许用户仅摄取更改的数据,从而提高查询效率。它可以像任何作业一样进一步水平扩展,并将数据集直接存储在HDFS上。 Hudi的作用 上面还是比较抽象的话,接着我们来看下图,更形象的来了解Hudi
1、数据采集如何完成 OGG 不要涉及,Oracle DBA完成 Canal数据采集,一定知道高可用HA集群模式 2、数据量大小 Kafka topic 数据存储生命周期(多久) 7天
1.对一部分平台组件的FIPS 140-2合规性支持,通过使用FIPS 140-2验证的加密模块,并在启用了FIPS模式的Redhat和CentOS操作系统上进行部署,现在可以配置CDP Private Cloud Base组件使用符合FIPS的加密技术;
本文介绍了Apache Kudu,一个针对Apache Hadoop平台的列式存储管理器。Kudu具有快速处理OLAP工作负载、与MapReduce、Spark和其他Hadoop生态系统组件集成、紧密集成Apache Impala以及支持高可用性和水平扩展等特点。同时,Kudu还提供了一种结构化的数据模型,以及一系列强大的API和CLI工具,以帮助开发人员更轻松地构建基于Kudu的应用。
点赞之后,上一篇传送门: https://blog.csdn.net/weixin_39032019/article/details/89340739
领取专属 10元无门槛券
手把手带您无忧上云