Spark是发源于美国加州大学伯克利分校AMPLab的集群计算平台,它立足于内存计算,性能超过Hadoop百倍,从多迭代批量处理出发,兼收并蓄数据仓库、流处理和图计算等多种计算范式,是罕见的全能选手。Spark采用一个统一的技术堆栈解决了云计算大数据的如流处理、图技术、机器学习、NoSQL查询等方面的所有核心问题,具有完善的生态系统,这直接奠定了其一统云计算大数据领域的霸主地位。 伴随Spark技术的普及推广,对专业人才的需求日益增加。Spark专业人才在未来也是炙手可热,轻而易举可以拿到百万的薪酬。而要想
▊《Offer来了:Java面试核心知识点精讲.框架篇》 王磊 著 电子书售价:49.5元 2020年06月出版 本书是对Java程序员面试中常见的微服务、网络编程、分布式存储和分布式计算等必备知识点的总结,包括Spring原理及应用、Spring Cloud原理及应用、Netty网络编程原理及应用、ZooKeeper原理及应用、Kafka原理及应用、Hadoop原理及应用、HBase原理及应用、Cassandra原理及应用、ElasticSearch原理及应用、Spark原理及应用、Flink原理及应用。
Ⅱ、默认情况下Scala不需要语句终结符,会默认将每一行作为一个语句,如果一行要写多条语句则必须要使用语句终结符 – " ;",也可以用块表达式包含多条语句,最后一条语句的值就是这个块表达式的运算结果。
项目方面:项目闪光点、优化点、涉及到的关键技术这些基本都会问,事先最好准备一下、如果有开源项目经验就更好。
Spark作业运行的集群环境有两种,分别基于standalone模式和Yarn集群模式。我们知道Yarn集群提供了HA来保证了集群的高可用,而standalone也提供了一种集群高可用的方法,即通过配置可以实现双master机制,保证在一个master挂掉以后,另外一个master立即启用。spark的主备切换提供了两种模式,一种是基于文件系统的,另外一种是基于zookeeper的。下面我们来看看spark集群的master主备切换是怎么实现的,如下图所示;
最近很多球友都说在准备面试,不知道准备点啥,尤其是spark,实际上星球里浪尖分享的内容真的都掌握了,应对一般面试绝对没问题,但是遗憾的事情是很多人都是处于不会主动搜集资料,主动梳理知识,主动记忆整理知识,而是伸手要粮的境地。浪尖觉得这个是阻止你成长的罪魁祸手。前天跟朋友聚餐就说道这种情况,不努力,不加班给自己喂粮的,没有足够量和时间积累的人很难在一个领域里有所建树。
在大数据计算领域,Spark已经成为了越来越流行、越来越受欢迎的计算平台之一。Spark的功能涵盖了大数据领域的离线批处理、SQL类处理、流式/实时计算、机器学习、图计算等各种不同类型的计算操作,应用范围与前景非常广泛。在美团•大众点评,已经有很多同学在各种项目中尝试使用Spark。大多数同学(包括笔者在内),最初开始尝试使用Spark的原因很简单,主要就是为了让大数据计算作业的执行速度更快、性能更高。
1)累加器在全局唯一的,只增不减,记录全局集群的唯一状态; 2)在exe中修改它,在driver读取; 3)executor级别共享的,广播变量是task级别的共享两个application不可以共享累加器,但是同一个app不同的job可以共享。
面试题总结是一个长期工作,面试不停,这份面试题总结就不会停。以后会慢慢把Java相关的面试题、计算机网络等都加进来,其实这不仅仅是一份面试题,更是一份面试参考,让你熟悉面试题各种提问情况,当然,项目部分,就只能看自己了,毕竟每个人简历、实习、项目等都不一样。
现在,几乎所有公司都离不开推荐、广告、搜索这 3 类业务场景,因此 Spark 也相应成了大多数互联网公司的标配: 美团在 2014 年就引入 Spark,并将其逐渐覆盖到大多数业务线;字节跳动也基于 Spark 构建数据仓库,去服务了几乎所有的产品线;还有 Facebook 也将数据分析引擎切换为 Spark。 以美团为例,它海量的日志数据将被汇总处理、分析、挖掘与学习,为各种推荐、搜索系统甚至公司战略目标制定提供数据支持。 而 Spark 能在相同资源使用情况下,把作业执行的速度提升百倍,极大的提高了生
新路线图在Spark一章不再以Java,而把Python语言作为第一语言,更适应未来的发展趋势,路线图主要分为六大模块,根据以下内容对照自己掌握了多少大数据的知识,查缺补漏!文末送全套视频+源码资料。
spark是借鉴了Mapreduce,并在其基础上发展起来的,继承了其分布式计算的优点并进行了改进,spark生态更为丰富,功能更为强大,性能更加适用范围广,mapreduce更简单,稳定性好。主要区别
主要是转换算子,action,和状态算子,这些其实,就按照api手册或者源码里接口介绍结合业务来编码。
Spark 作者:章华燕 编辑:龚 赛 概述 1 在开发完Spark作业之后,就该为作业配置合适的资源了。Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置。资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢;或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常。总之,无论是哪种情况,都会导致Spark作业的运行效
如果在Task执行期间发生大量的Full GC,那么说明年轻代的Eden区域给的空间不够大,可以通过一下方式进行调优:
---- 最近工作中,接触到最有用的“玩具”就是Spark了,在cpu密集型业务驱动下,提升CPU处理效率,高效的利用内存是最优先的事务,所以有个好的计算工具太重要了,这也是促使我去寻找各种分布式计算工具的动力。 初次接触Spark是在参与公司的一个日志系统项目了解的, 当时就觉得Spark是个内存计算,支持hive sql 的利器,而且调用api非常简单、好用。当时使用的是Spark1.3 的版本,虽然功能还不太完善但是已经初见威力。后来闲下来就打算深入研究一下Spark,这个研究持续近1年
通过上面图可以很清楚的看到从Job的action到中间调度在到最后的具体执行的过程,下面针对该图做一个实例,来更加清楚的理解。
本系列主题是大数据开发面试指南,旨在为大家提供一个大数据学习的基本路线,完善数据开发的技术栈,以及我们面试一个大数据开发岗位的时候,哪些东西是重点考察的,这些公司更希望面试者具备哪些技能。
通过讲解PCA算法的原理,使大家明白降维算法的大致原理,以及能够实现怎么样的功能。结合应用降维算法在分类算法使用之前进行预处理的实践,帮助大家体会算法的作用。
1)参数用于设置每个stage的默认task数量。这个参数极为重要,如果不设置可能会直接影响你的Spark作业性能; 2)很多人都不会设置这个参数,会使得集群非常低效,你的cpu,内存再多,如果task始终为1,那也是浪费, spark官网建议task个数为CPU的核数*executor的个数的2~3倍。
https://github.com/JerryLead/SparkInternals Spark Internals Spark Version: 1.0.2 Doc Version: 1.0.2.0 Authors Weibo Id Name @JerryLead Lijie Xu Introduction 本文主要讨论 Apache Spark 的设计与实现,重点关注其设计思想、运行原理、实现架构及性能调优,附带讨论与 Hadoop MapReduce 在设计与实现上的区别。不喜
最近有个朋友面试上了阿里P7,薪资暴涨了50%,我私下问他能不能给大家分析一下经验。 聊了很多,最后给我推荐了一份特别全的的八股文资料,这个资料在他面试的过程中给了他很多的帮助。 这份资料最初的版本,是来自某个大厂面试官给学弟整理的面经,后来经过学弟的不断收集、完善,慢慢形成了一个Java资料库。 现在的完整版资料是视频合集+PDF合集,包含了有Java 集合、JVM、多线程、设计模式、算法调优、Spring全家桶、MyBatis、ZooKeeper、Dubbo、Elasticsearch、MongoDB、
最近有粉丝秋招面试回来,说原来MySQL在互联网公司原来如此的重要!京东和阿里的面试中都被问到了。。。。。兄弟你才知道啊! 防止在后续求职跳槽中还有对“MySQL”掉以轻心的人,这里给大家再简单强调一下: 近年来在互联网行业中,MySQL稳居第二,随时可能超过Oracle,随着其性能一直在被优化,安全机制也趋向成熟,更重要的是开源免费的,所以目前互联网行业中MySQL的使用是非常多的,也是求职中的面试重点。 很多人拥有大厂梦,却容易在面试中因为MySQL败下阵来。 原因是很多人平时工作上没机会接触,小公司的
本文原文 http://www.leonlu.cc/profession/19-spark-shuffle ,作者 LeonLu
编写 shell 脚本,定期检测 master 状态,出现宕机后对 master 进行重启操作
一、大数据技术基础 1、linux操作基础 linux系统简介与安装 linux常用命令–文件操作 linux常用命令–用户管理与权限 linux常用命令–系统管理 linux常用命令–免密登陆配置与网络管理 linux上常用软件安装 linux本地yum源配置及yum软件安装 linux防火墙配置 linux高级文本处理命令cut、sed、awk linux定时任务crontab 2、shell编程 shell编程–基本语法 shell编程–流程控制 shell编程–函数 shell编程–综合案例–自
(1)spark运行流程、源码架构 https://blog.csdn.net/sghuu/article/details/103547937
了解Spark架构原理及相关任务提交流程前,我们需要先了解一下Spark中的一些角色概念。
这是个老生常谈的话题,大家是不是看到这个文章标题就快吐了,本来想着手写一些有技术深度的东西,但是看到太多童鞋卡在入门的门槛上,所以还是打算总结一下入门经验。这种标题真的真的在哪里都可以看得到,度娘一搜就是几火车皮,打开一看都是千篇一律的“workcount”、“quickstart”,但是这些对于初学者来说还差的太多,这些东东真的只是spark的冰山一角,摸着这些石头过河的话,弯路太多、暗礁涌动,一个不留神就掉河里了。希望我这篇文章能让大家看到些不一样的地方。文章分五个部分,包括官网、blog(特指某sdn
在大数据的诸多技术框架当中,Spark发展至今,已经得到了广泛的认可。Hadoop与Spark可以说是大部分企业级数据平台的主流选择,基于不同的应用场景,结合实际需求,来选择相应的技术架构。今天我们来聊聊Spark运行原理。
在FP Tree算法原理总结和PrefixSpan算法原理总结中,我们对FP Tree和PrefixSpan这两种关联算法的原理做了总结,这里就从实践的角度介绍如何使用这两个算法。由于scikit-learn中没有关联算法的类库,而Spark MLlib有,本文的使用以Spark MLlib作为使用环境。
前面《Spark SQL / Catalyst 内部原理 与 RBO》与《Spark SQL 性能优化再进一步 CBO 基于代价的优化》介绍的优化,从查询本身与目标数据的特点的角度尽可能保证了最终生成的执行计划的高效性。但是
Spark采用一个统一的技术堆栈解决了云计算大数据的如流处理、图技术、机器学习、NoSQL查询等方面的所有核心问题,具有完善的生态系统,这直接奠定了其一统云计算大数据领域的霸主地位; 要想成为Spark高手,需要经历一下阶段: 第一阶段:熟练的掌握Scala语言 1, Spark框架是采用Scala语言编写的,精致而优雅。要想成为Spark高手,你就必须阅读Spark的源代码,就必须掌握Scala,; 2,虽然说现在的Spark可以采用多语言Java、Python等进行应用程序开发,但是最快速的和支持最
一入编程深似海,从此女神是路人。没办法,这行就这样。你不学Spring,总不是跑去学JVM/微服务架构/分布式去了,不断学习根本避免不了。所以关键在于把时间投在学什么上比较划算。
本文主要介绍了如何基于Spark、Hadoop、HBase、Hive、Spark Streaming和Kafka等分布式计算技术,结合Java、Scala、Python和R等编程语言,实现大数据平台搭建、数据处理和机器学习等应用。包括Spark生态、原理、架构、编程范式和调优技巧等方面的内容。
在开发完Spark作业之后,就该为作业配置合适的资源了。 Spark的资源参数,基本都可以在spark-submit命令中作为参数设置。
卷友们,大家好 ~ 我是 Alex 。之前已经陆续输出了 Hadoop三大核心组件 的 架构思想和原理 和 Hive架构设计和原理 ,每篇都受到了读者小伙伴们的一致好评 ~ 感谢大家的支持。大家可能已经猜到了,按照发展趋势,本篇将为大家介绍 关于 Spark 的架构设计和原理,希望大家受用!
注:这是一份学习笔记,记录的是参考文献中的可扩展机器学习的一些内容,英文的PPT可见参考文献的链接。这个只是自己的学习笔记,对原来教程中的内容进行了梳理,有些图也是引用的原来的教程,若内容上有任何错误,希望与我联系,若内容有侵权,同样也希望告知,我会尽快删除。 可扩展机器学习系列主要包括以下几个部分: 概述 Spark分布式处理 线性回归(linear Regression) 梯度下降(Gradient Descent) 分类——点击率预测(Click-through Rate Prediction) 神经
这两个月来,很多小伙伴留言问我618、双11各大电商后端的技术,最多的是关于系统压力暴增情况下如何进行MySQL数据库优化的。 今天就结合我自己工作中的真实案例和大家分享一下吧。 前几年我待过一家创业公司,做的是商城业务。那两年公司业务迅速增长,用户从零积累到千万级别,每天访问量几亿次,高峰QPS高达上万次每秒。 赶上618、双十一大促期间,系统的写压力成倍增长,读业务的请求量更是在写业务的请求量的50倍。后面我们就面临了极具技术挑战性的数据库升级过程。 最初的技术选型,采用的是Java语言进行开发,数据库
近年来大数据BigData、人工智能AI、物联网Iot等行业发展迅猛,很多人都想要从事大数据技术开发工作,但是,请问要怎么做,路线是什么?从哪里开始学?学哪些?这是一个大问题。对于我自己来说,最近也在学一些大数据开发相关的技术,所以之前整理了一份《大数据技术学习路线》,希望对你有所帮助。
前言 继基础篇讲解了每个Spark开发人员都必须熟知的开发调优与资源调优之后,本文作为《Spark性能优化指南》的高级篇,将深入分析数据倾斜调优与shuffle调优,以解决更加棘手的性能问题。 数据倾斜调优 调优概述 有的时候,我们可能会遇到大数据计算中一个最棘手的问题——数据倾斜,此时Spark作业的性能会比期望差很多。数据倾斜调优,就是使用各种技术方案解决不同类型的数据倾斜问题,以保证Spark作业的性能。 数据倾斜发生时的现象 绝大多数task执行得都非常快,但个别task执行极慢。比如,总共有1
很多朋友对大数据行业心向往之,却苦于不知道该如何下手。作为一个零基础大数据入门学习者该看哪些书?今天给大家推荐一位知乎网友挖矿老司机的指导贴,作为参考。
领取专属 10元无门槛券
手把手带您无忧上云