在上一篇文章中我们对geopandas中的坐标参考系有了较为深入的学习,而在日常空间数据分析工作中矢量文件的读入和写出,是至关重要的环节。
Shapefile文件是美国ESRI公司发布的文件格式,因其ArcGIS软件的推广而得到了普遍的使用,是现在GIS领域使用最为广泛的矢量数据格式。官方称Shapefile是一种用于存储地理要素的几何位置和属性信息的非拓扑简单格式。
首先,我们需要安装 geopandas 和 shapely 库。可以通过以下命令来安装:
大家好,我是南南,最近一个AI模型爆火,不知道大家有没有刷到呢,他就是ChatGPT。
城市地下管网如给水、排水、燃气、电力、通讯、热力等管线,通过物探手段普查,最后形成GIS系统进行综合管理。
经常有朋友会问,我的数据,ArcGIS里没问题的,怎么FME一读就乱码了? 划重点:ArcGIS里打开正常!
今天在使用Java版GIS开源工具GeoTools读取ShapeFile文件,其中ShapeFile的dbf文件(属性表)中的属性为中文字符,按照官方的案例读取结果显示为乱码。 原始的代码为:
译注:绘制地图时因为一些原因可能需要使用shapefile添加地图信息,比如很多软件中的关于中国的地图信息都不是很准确,当要明确标注中国边界信息时就会出问题。这次就介绍一下如何利用shp文件添加地图信息。
下面的例子中,我们读取GeoJSON表示的中国省区数据,然后其转为Shapefile格式。
读者的问题涉及到地理信息系统(GIS)操作的一系列步骤,具体包括将栅格数据转换为点数据、为这些点数据添加XY坐标、通过空间连接给这些点添加行政区属性、以及计算指定行政区的质心。读者在使用ArcGIS软件完成前两步时未遇到明显问题,但在执行第三步时遇到了性能瓶颈,即使用ArcGIS和GeoPandas进行空间连接操作时系统会卡死。为了解决这个问题,读者尝试使用了dask-geopandas来处理约两百万个点的数据,但似乎遇到了错误。
在使用Maven构建Java项目时,通常会从中央仓库或其他远程仓库下载所需的依赖库。但是,有时候我们需要手动下载这些依赖库并将它们放到本地仓库,这里提供一个简单的步骤:
使用Fiona写入Shapefile数据,主要是构建一个Schema,然后将空间对象转为GeoJSON的形式进行写入。
开发环境为: 系统环境 Linux 4.4.0-36-generic #55~14.04.1-Ubuntu x86_64 x86_64 x86_64 GNU/Linux mongodb版本 当前最新版本3.2.9 但是下面的代码同样适用Windows环境!
现有一个记录北京市部分PM2.5浓度监测站点信息的Excel表格数据,格式为.xls;文件内包含站点编号、X与Y坐标、站点名称等四列数据,部分数据如下所示。
两种解决方案: 一、将整个shapefile转为GeoJSON然后直接导入mongoDB数据库中 首先,将shapefile数据转为WGS84地理坐标,然后使用GDAL的命令行工具ogr2ogr进行格式的转换,转换命令如下: ogr2ogr -f geoJSON continents.json continents.shp 删除生成JSON文件的前两行{ "type": "FeatureCollection",和最后一行}。 最后,使用mongodb的mongoimport工具进行导入: mongoimport --db world --collection continents < continents.json 这样子整个shapefile文件在mongodb中是以一个document存在的。
了解动物对环境的反应对于了解如何管理这些物种至关重要。虽然动物被迫做出选择以满足其基本需求,但它们的选择很可能也受到当地天气条件等动态因素的影响。除了直接观察之外,很难将动物行为与天气条件联系起来。在这个单元中,我们将从美洲狮收集的 GPS 项圈数据与通过 GEE 访问的 Daymet 气候数据集的每日温度估计值集成。
通常情况下,要获取某个区域内的格点数据,如果要求不是很高,直接采取矩形框挑选方法——即锁定所需范围内的经纬度,就能挑选出需要的数据。而对于不规则的范围,数据的匹配精度有一定要求,譬如,需要严格按照某个特定区域的shapefile文件来截取数据。虽然,NCL官网提供了可行的解决方案,但是 shapefile_mask_data(包含在shapefile_utils.ncl中,官网有提供)也仅仅是较好地适用于2维的Lat-Lon数据,对于3维或者更高维度的数据,其处理效率非常低下。所以,针对于这个问题,在实际的操作中我给出了一个快速处理的方案,仅供参考:
pyshp是python读写shape文件的一个很简单的库。下面记录其用法: 用法详见代码中: 1 #! /usr/bin/env python 2 # -*- coding:utf-8 -*- 3 4 import shapefile 5 6 sf = shapefile.Reader("shapefile/d_map_1000000.shp") 7 shapes = sf.shapes() # shapes方法返回描述每个形状记录的几何形状的Shape对象的列表。 8 9
在上篇的《Shapfile属性操作之增》和《Shapefile属性操作之删》中我们分别介绍了对于空间矢量数据属性的增加(CREATE)和删除(DELETE)操作,这篇我们聊聊数据的更新操作(UPDATE)。
概述: 本文讲述如何在Python中用GDAL实现根据输入矢量边界对栅格数据的裁剪。 效果: 裁剪前 矢量边界 裁剪后 实现代码: # -*- coding: utf-8 -*- """ @autho
您可以使用资产管理器或 命令行界面 (CLI)以 Shapefile 或 CSV 格式上传数据集。(有关使用代码编辑器或 CLI导入栅格的详细信息,请参阅导入栅格数据。)您上传的资产最初是私有的,但可以按照共享资产部分中的说明进行共享。
这篇文章主要描述了如何使用GDAL/OGR打开矢量文件、读取属性表,并将部分属性写出至txt。
pandas应该是大家非常熟悉的Python第三方库,其主要用于数据整理和分析,这次来介绍pandas的一个近亲-geopandas
在python与地理空间分析(1)与(2)中我们介绍了GIS中常用的数据类型、python在处理地理空间数据时用到的包以及给定经纬度计算空间距离的算法,本期我们主要介绍对地理空间分析中常用到的矢量数据shp文件的处理,在捍卫祖国领土从每一张地图开始我们也提供较为精准的包括南海九段线的中国地图,大家可以自行下载。
shapefile是常见的矢量数据格式,但是由于其文件组成结构很难在webgis上直接展示。本文通过express和compressing实现打包后shapefile文件的上传,并结合shapefile.js实现shapefile数据的转换展示。
最近在处理数据,需要筛选陆地、海洋还有特定区域的信息进行分析,主要还是利用shapefile文件创建mask文件,然后进行筛选。
最近一段时间(本文写作于2020-07-10)geopandas与geoplot两个常用的GIS类Python库都进行了一系列较为重大的内容更新,新增了一些特性,本文就将针对其中比较实际的新特性进行介绍。
选择存放文件夹,右击选择NEW,新建一个shapefile类型的面文件。接下来设置坐标系,坐标系选择导入遥感影像相同的坐标系
目录 前言 栅格化处理 总结 参考链接 一、前言 首先前几天学习了一下Markdown,今天将博客园的编辑器改为Markdown,从编写博客到界面美观明显都清爽多了,也能写出各种样式的东西了,有关Markdown,网上内容很多,暂且不表,开始进入今天的主题。 前几天碰到一个任务,需要将矢量数据导入到Accumulo中,然后通过geotrellis进行调用。这一下又犯难了,之前处理的全是raster数据,通过ETL类可以直接进行导入生成金字塔等,如何将矢量数据导入平台之前未曾碰到,
在GIS中,对于有方向属性的线数据,比如河流流向,管网流向,使用有动画流动效果的表示更为形象。
研究生讨论班第一次用 slides 作报告,主要讲了《Geospatial Health Data》[1]一书中关于空间地理数据可视化的内容。文末给出对应的 pdf 网页版本。
矢量数据是通过记录空间对象的坐标及空间关系来表达空间几何位置的数据,主要是点、线、面,在ArcGIS中也成要素类。
在气象数据分析中,地理空间要素是一个必须考虑的关键特征项,也是重要的影响因素。例如气温会随着海拔的升高而降低,地形的坡向朝向也会影响风速的分布,此外,典型的地形会形成特定的气候条件,也是数据挖掘中可以利用的区域划分标准。数据分析中,地理空间分析往往能提供有效的信息,辅助进行决策。随着航空遥感行业的发展,积累的卫星数据也成为了数据挖掘的重要数据来源。 地理空间分析有好多软件可以支持,包括Arcgis,QGIS等软件平台,本系列文章将会着重分享python在地理空间分析的应用。主要包括地理空间数据的介绍,常用的python包,对矢量数据的处理,对栅格数据的处理,以及常用的算法和示例。 地理空间数据包括几十种文件格式和数据库结构,而且还在不断更新和迭代,无法一一列举。本文将讨论一些常用的地理空间数据,对地理空间分析的对象做一个大概的了解。 地理空间数据最重要的组成部分:
一个很常见的需求是求取这个矢量中所有面元素的并集,通过GDAL/GEOS很容易实现这个功能,具体代码如下:
矢量数据基于对象模型(object-based)的空间数据描述模型。矢量数据使用对象(点,线,面)及其对象之间的关系描述空间实体。
我们平时在数据可视化或空间数据分析的过程中经常会需要某个地区的道路网络及节点数据,而OpenStreetMap就是一个很好的数据来源(譬如图1柏林路网):
我们平时在数据可视化或空间数据分析的过程中,经常会需要某个地区的道路网络及节点数据,而OpenStreetMap就是一个很好的数据来源(譬如图1柏林路网):
上一期,对Python绘制气象实用地图做了比较详细的介绍,尽管已经能够满足部分需求了,但是,在实际的应用需求中,可能还是别的需求,那么,今天就手把手教大家如何绘制几个省份的白化等值线contour地图。另外,也算是对上一期进行补充,谈谈一些小技巧。
将转换成png后的图加载到软件中(专业软件ENVI5.3)查看结果详细信息如下图所示,成功的转换成png格式了。
概述 本文讲述如何结合Geotools实现后端shp文件的生成与打包下载。 实现效果 实现 shp文件生成 如何生成shp文件在前面的相关博文里面已经做过说明,本文不再赘述。 shp文件打包
小O地图提供基于互联网地图数据挖掘功能,支持下载行政区、POI(兴趣点)、公交数据、道路数据、绿地水系、建筑物轮廓、小区轮廓等数据 。
GIS空间分析是通过对GIS系统中的空间地物的空间位置以及分布形态等空间特性进行分析推理等得到额外有用信息的过程。GIS空间分析包含广泛的内容,是GIS系统的核心功能。
《Python空间数据处理实战》系列的博文好久都没有更新了,今天乘周末有点时间,补了个觉,然后写几篇博文。
最初的matlab完美白化的脚本是3年多之前在气象家园论坛发布的。当时是我们大师姐想要用matlab白化,然后就有了最初的版本,但最初的版本不支持m_map。虽然最后给了一个支持m_map的思路,但是没有给出具体实现的完整代码。
本次我们就爬取北京地区公园的位置信息。需要注意是,要把get_json函数中的ak的值替换为你刚申请的AK。
Geobuilding是一款GIS数据生产工具,可以制作点线面、无缝地理网格、矢量建筑物含高度GIS数据、城市漫游规划设计。支持对已有数据的修改标注。可导出geojson shapefile osm svg格式
概述: 本文讲述如何在geotools中实现shp数据的缓冲区分析并保存到shp文件中。 效果: 实现代码: package com.lzugis.geotools; import java.io.
领取专属 10元无门槛券
手把手带您无忧上云