下面是单层rnn+attention的代码,若考虑多层rnn请参考博主的:tf.contrib.rnn.static_rnn与tf.nn.dynamic_rnn区别 def attention(inputs...output = tf.reduce_sum(inputs * tf.reshape(alphas, [-1, sequence_length, 1]), 1) return output # cnn...MAX_CAPTCHA*CHAR_SET_LEN # 输出层 # 定义待训练的神经网络 def recurrent_neural_network(): data = crack_captcha_cnn...([n_output_layer]))} #lstm_cell = tf.contrib.rnn.BasicLSTMCell(rnn_size) #outputs, status =...(rnn_size) outputs, status = tf.contrib.rnn.static_rnn(lstm_cell, data, dtype=tf.float32)
CNN 卷积神经网络 2. 预训练模型 3. RNN 循环神经网络 学习于:简单粗暴 TensorFlow 2 1....CNN 卷积神经网络 卷积神经网络,卷积后尺寸计算 tf.keras.layers.Conv2D, tf.keras.layers.MaxPool2D # CNN 模型 class myCNN(tf.keras.Model...RNN 循环神经网络 数据预处理,字符 与 idx 的相互转换映射, 字符集 获取 batch_size 个样本、每个样本的下一个字符(标签) import tensorflow as tf import
CNN,RNN,LSTM都是什么?...卷积神经网络(Convolutional Neural Network, CNN) CNN 是一种前馈神经网络,通常由一个或多个卷积层(Convolutional Layer)和全连接层(Fully...不过在 CNN 的应用中,卷积运算的形式是数学中卷积定义的一个特例,它的目的是提取输入的不同特征。 一般情况下,从直观角度来看,CNN 的卷积运算,就是下图这样: ?...CNN 经常被用于处理图像,那么对应的输入数据就是一张图片的像素信息。...CNN 结构相对简单,可以使用反向传播算法进行训练,这使它成为了一种颇具吸引力的深度学习网络模型。 除了图像处理,CNN 也会被应用到语音、文本处理等其他领域。
CNN+RNN 相同点 都是传统神经网络的扩展; 前向计算产生结果,反向计算进行模型的更新; 每层神经网络横向可以多个神经元共存,纵向可以有多层神经网络连接。...不同点 CNN进行空间扩展,神经元与特征卷积;RNN进行时间扩展,神经元与多个时间输出计算; RNN可以用于描述时间上连续状态的输出,有记忆功能;CNN则用于静态输出; CNN高级结构可以达到100+深度...组合方式 CNN特征提取,用于RNN语句生成->图片标注 RNN特征提取用于CNN内容分类->视频分类 CNN特征提取用于对话问答->图片问答 组合方式实现 特征提取: LSTM输出...视频行为识别 常用方法 CNN特征简单组合 3D版本CNN RNN+CNN RNN用于CNN特征融合 CNN进行特征提取; LSTM判断; 多次识别结果进行分析。...RNN用于CNN特征筛选+融合 并不是所有的视频图像包含确定分类信息; RNN用于确定哪些frame是有用的; 对有用的图像特征融合; RNN用于目标检测 CNN直接产生目标候选区; LSTM对产生候选区进行融合
个样本的梯度下降 2.7 向量化【vectorization】 2.8 向量化logistic回归 激活函数 3 神经网络 3.1 神经网络的表示 3.2 计算神经网络的输出 3.3单层感知器 4 卷积神经网络(CNN...) 4.1 边缘检测示例 4.2 Padding 5 循环神经网络【RNN】 5.1 序列模型 5.2 循环神经网络 5.3 通过时间的反向传播 6.注意力模型【Attention Model】...尤其体现在深度神经网络模型(如CNN)中,当模型增加N层之后,理论上ReLU神经元的激活率将降低2的N次方倍。...给定训练数据集,权重wi(i=1,2,… , n)以及阈值θ可通过学习得到,阈值θ可看作一个固定输入为-1.0的哑结点所对应的连接权重w(n+1),这样,权重和阈值的学习就可统一为权重的学习 4 卷积神经网络(CNN...卷积的分类 5 循环神经网络【RNN】 5.1 序列模型 5.2 循环神经网络 5.3 通过时间的反向传播 6.注意力模型【Attention Model】
前言 本文将从什么是CNN?什么是RNN?什么是LSTM?什么是Transformer?四个问题,简单介绍神经网络结构。...神经网络结构 一、什么是CNN 卷积神经网络(CNN):通过卷积和池化操作有效地处理高维图像数据,降低计算复杂度,并提取关键特征进行识别和分类。 网络结构 卷积层:用来提取图像的局部特征。...卷积神经网络(CNN) 解决问题 提取特征:卷积操作提取图像特征,如边缘、纹理等,保留图像特征。 数据降维:池化操作大幅降低参数量级,实现数据降维,大大减少运算量,避免过拟合。...二、什么是RNN 循环神经网络(RNN):一种能处理序列数据并存储历史信息的神经网络,通过利用先前的预测作为上下文信号,对即将发生的事件做出更明智的决策。...循环神经网络(RNN) 解决问题 序列数据处理:RNN能够处理多个输入对应多个输出的情况,尤其适用于序列数据,如时间序列、语音或文本,其中每个输出与当前的及之前的输入都有关。
卷积神经网络(CNN)、循环神经网络(RNN)与Transformer作为深度学习中三大代表性模型,其理解和应用能力是面试官评价候选者深度学习技术实力的重要标准。...本篇博客将深入浅出地探讨Python深度学习面试中与CNN、RNN、Transformer相关的常见问题、易错点,以及如何避免这些问题,同时附上代码示例以供参考。一、常见面试问题1....CNN结构与应用面试官可能会询问CNN的基本组成单元(如卷积层、池化层、全连接层等)、工作原理以及在图像识别、物体检测等任务中的应用。...RNN结构与应用面试官可能要求您展示RNN的基本组成单元(如LSTM、GRU等)、工作原理以及在文本分类、语言建模、机器翻译等任务中的应用。...结语精通CNN、RNN、Transformer是成为一名优秀Python深度学习工程师的关键。
p=15850 在本文中,您将发现如何使用标准深度学习模型(包括多层感知器(MLP),卷积神经网络(CNN)和递归神经网络(RNN))开发,评估和做出预测。...下面列出了在MNIST数据集上拟合和评估CNN模型的代码片段。...RNN在时间序列预测和语音识别方面也取得了一定程度的成功。 RNN最受欢迎的类型是长期短期记忆网络,简称LSTM。...您也可以在MLP,CNN和RNN模型中添加Dropout层,尽管您也可能想探索与CNN和RNN模型一起使用的Dropout的特殊版本。 下面的示例将一个小型神经网络模型拟合为一个合成二进制分类问题。...您可以对MLP,CNN和RNN模型使用批标准化。 下面的示例定义了一个用于二进制分类预测问题的小型MLP网络,在第一隐藏层和输出层之间具有批处理归一化层。
从有一些有趣的用例看,我们似乎完全可以将 CNN 和 RNN/LSTM 结合使用。许多研究者目前正致力于此项研究。但是,CNN 的最新研究进展趋势可能会令这一想法不合时宜。 ?...这就是我首次想到组合使用 CNN(卷积神经网络)和 RNN(递归神经网络)时的反应。毕竟,二者分别针对完全不同类型的问题做了优化。 CNN 适用于分层或空间数据,从中提取未做标记的特征。...还有一些近期提出的模型,它们探索了如何组合使用 CNN 和 RNN 工具。在很多情况下,CNN 和 RNN 可使用单独的层进行组合,并以 CNN 的输出作为 RNN 的输入。...有研究者实现了一种分层的 CNN-RNN 对,以 CNN 的输出作为 RNN 的输入。为创建对每个视频片段的“瞬间”描述,研究者从逻辑上以 LSTM 取代了 RNN。...这意味着 RNN 无法像 CNN 那样利用大规模并行处理(MPP)。尤其是为了更好地理解上下文而需要同时运行 RNN/LSTM 时。 这是一个无法消除的障碍,绝对会限制 RNN/LSTM 架构的效用。
开源项目 CRNN(CNN+RNN+CTCLoss) 完整代码 以及预训练模型 获取方式: 关注微信公众号 datayx 然后回复 汉字识别 即可获取。 如何去测试 1.加载模型,将模型放入.
机器之心在 GitHub 项目中曾介绍用于序列建模的 RNN 与 CNN,也介绍过不使用这两种网络的 Transformer。...与 RNN 相比,前馈模型的有限上下文意味着它无法捕获超过 k 个时间步的模式。但是,使用空洞卷积等技术,可以使 k 非常大。 为何关注前馈模型?...截止本稿发布,前馈自回归 WaveNet 是对 LSTM-RNN 模型的重大改进。 延伸阅读。...Bai 等人给出了另一种解释: RNN 的「无限记忆」优势在实践中基本上不存在。 正如 Bai 等人的报告中说的一样,即使在明确需要长期上下文的实验中,RNN 及其变体也无法学习长序列。...截断 RNN(可以看做是前馈模型)和流行的卷积模型之间的表现力权衡是什么?为什么前馈网络在实践中的性能和不稳定的 RNN 一样好?
一、前述 CNN和RNN几乎占据着深度学习的半壁江山,所以本文将着重讲解CNN+RNN的各种组合方式,以及CNN和RNN的对比。...二、CNN与RNN对比 1、CNN卷积神经网络与RNN递归神经网络直观图 ? 2、相同点: 2.1. 传统神经网络的扩展。 2.2. 前向计算产生结果,反向计算模型更新。 ...CNN空间扩展,神经元与特征卷积;RNN时间扩展,神经元与多个时间输出计算 3.2. RNN可以用于描述时间上连续状态的输出,有记忆功能,CNN用于静态输出 3. 3....CNN高级100+深度,RNN深度有限 三、CNN+RNN组合方式 1. CNN 特征提取,用于RNN语句生成图片标注。 ? 2. RNN特征提取用于CNN内容分类视频分类。 ? 3....CNN特征提取 2. CNN 特征+语句开头,单词逐个预测 2、视频行为识别 : 视频中在发 生什么? ? 2.1常用方法总结: RNN用于CNN特征融合 1. CNN 特征提取 2.
均值设为0 Xavier初始法,适用于普通激活函数 (tanh,sigmoid):stdev = np.sqrt(n) He初始化,适用于ReLU:stdev = np.sqrt(2/n)svd初始化:对RNN...dropout 的位置比较有讲究, 对于RNN,建议放到输入->RNN与RNN->输出的位置.关于RNN如何用dropout,可以参考这篇论文:http://arxiv.org/abs/1409.2329...rnn 的 dim 和 embdding size,一般从 128 上下开始调整. batch size,一般从128左右开始调整.batch size合适最重要,并不是越大越好.word2vec 初始化...再补充一个 rnn trick,仍然是不考虑时间成本的情况下,batch size=1 是一个很不错的 regularizer, 起码在某些 task 上,这也有可能是很多人无法复现 alex graves...另外,构建序列神经网络(RNN)时要优先选用 tanh 激活函数 2.学习率设定: 一般学习率从 0.1 或 0.01 开始尝试。
编辑:CVer编辑Amusi https://www.zhihu.com/question/41631631 你有哪些deep learning(rnn、cnn)调参的经验?...dropout的位置比较有讲究, 对于RNN,建议放到输入->RNN与RNN->输出的位置.关于RNN如何用dropout,可以参考这篇论文:http://arxiv.org/abs/1409.2329...例如RNN和传统模型....2、训 RNN 不加 gradient clipping,导致训练一段时间以后 loss 突然变成 Nan。...Networks(各种训练技巧集大成) EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks(当前对参数利用最有效的 CNN
今天来对比学习一下用 Keras 搭建下面几个常用神经网络: 回归 RNN回归 分类 CNN分类 RNN分类 自编码分类 它们的步骤差不多是一样的: [导入模块并创建数据] [建立模型] [定义优化器...RNN回归 我们要用 sin 函数预测 cos 数据,会用到 LSTM 这个网络。 ? 1. 搭建模型,仍然用 Sequential。 2. 然后加入 LSTM 神经层。...CNN分类 ? 数据仍然是用 mnist。 1. 建立网络第一层,建立一个 Convolution2D,参数有 filter 的数量。...RNN分类 ? RNN 是一个序列化的神经网,我们处理图片数据的时候,也要以序列化的方式去考虑。 图片是由一行一行的像素组成,我们就一行一行地去序列化地读取数据。
03 循环神经网络 循环神经网络(RNN)是最常见的深度学习算法之一,它席卷了整个世界。我们现在在自然语言处理或理解方面几乎所有最先进的性能都归功于RNN的变体。...你在整个句子上展开RNN,一次处理一个单词(图1.13)。RNN 具有适用于不同数据集的变体,有时我们会根据效率选择变体。长短期记忆 (LSTM)和门控循环单元(GRU)是最常见的 RNN 单元。...▲图1.15 典型的 CNN Facebook的研究小组发现了一个基于卷积神经网络的先进自然语言处理系统,其卷积网络优于RNN,而后者被认为是任何序列数据集的首选架构。...虽然一些神经科学家和人工智能研究人员不喜欢CNN(因为他们认为大脑不会像CNN那样做),但基于CNN的网络正在击败所有现有的网络实现。...尽管我们不能将强化学习视为与 CNN/RNN 等类似的另一种架构,但这里将其作为使用深度神经网络来解决实际问题的另一种方法,其配置如图1.17所示。 ?
://arxiv.org/abs/1509.01626 本文是基于TensorFlow在中文数据集上的简化实现,使用了字符级CNN和RNN对中文文本进行分类,达到了较好的效果。...RNN循环神经网络 配置项 RNN可配置的参数如下所示,在rnn_model.py中。 ? RNN模型 具体参看rnn_model.py的实现。 大致结构如下: ?...训练与验证 这部分的代码与 run_cnn.py极为相似,只需要将模型和部分目录稍微修改。 运行 python run_rnn.py train,可以开始训练。...在验证集上的最佳效果为91.42%,经过了8轮迭代停止,速度相比CNN慢很多。 准确率和误差如图所示: ? 测试 运行 python run_rnn.py test 在测试集上进行测试。 ?...对比两个模型,可见RNN除了在家居分类的表现不是很理想,其他几个类别较CNN差别不大。 还可以通过进一步的调节参数,来达到更好的效果。
大学、研究机构以及Linguee的竞争对手们发表的最新研究表明,卷积神经网络(CNN)是更好的途径,而不是该公司一直使用的循环神经网络(RNN)。...这篇文章不是要说CNN和RNN之间的差异,只需说对于较长的、有较复杂相关性的句子来说,CNN是更好的选择。 一个CNN可以粗略地说是一次处理句子的一个词。...因此,DeepL和机器学习领域的其他人应用“注意力机制”来监控这种潜在的问题,在CNN移动到下一个单词或短语之前就解决这些问题。
tf.orthogonal_initializer 目录 前言 机器学习 两大模块:数据、模型 三个阶段:训练、评估、预测 优势 实现 数据集:TFRecord+Dataset 定义input_fn 定义model_fn 正向传播 CNN...:二维卷积层 RNN:循环层(双向循环层) CNN+RNN:一维卷积层+循环层 预测分支 训练分支 评估分支 创建estimator 训练 评估 预测 可视化 ---- 前言 该文是YJango:TensorFlow...注:不同网络结构训练1epoch+评估的结构可以在CNN.ipynb,RNN.ipynb,biRNN.ipynb,CNN_RNN.ipynb中找到。...注:CNN之后的模型并不意味着更好,这里只是为了展示你可以使用任何模型结构来进行学习。...表示模型要存到哪里 mnist_classifier = tf.estimator.Estimator( model_fn=model_fn, model_dir="mnist_model_cnn
RNN 在大部分任务上都表现的更好,除了在关键词匹配和识别这类任务不如 CNN。这篇文章有很多不错的结论,值得一读!...CNN 的特点是善于抽取位置不变特征,而 RNN 的特点是善于按序列对单元进行建模。目前很多最先进的 NLP 任务之所以不断切换模型,就是因为 CNN 和 RNN 之间特点的差异性。...一般来说,CNN 是分层架构,RNN 是连续结构。在处理语言的任务上,我们怎么去选择呢?基于它们的特性“分层(CNN) vs....连续(RNN)”,我们倾向于为分类类型的任务选择 CNN,例如情感分类,因为情感通常是由一些关键词来决定的;对于顺序建模任务,我们会选择 RNN,例如语言建模任务,要求在了解上下文的基础上灵活建模。...由此表明,如果想要获得性能良好的 CNN 和 RNN,那么对这两个参数的优化将是非常重要的。 【回复关键词 “CNN与RNN” 下载原文】 本文由 AI100 编译,转载需得到本公众号同意。
领取专属 10元无门槛券
手把手带您无忧上云