很多直接面向消费者的企业,也是我们常说的To C的企业通常都会建立自己的会员体系,并在线上和线下的渠道中积累了大量的会员数据。但是如何能够更好的利用这些会员数据以及如何识别哪些是高价值的会员,这些都是每个企业都在不断探索的话题。 我们今天就一起来讨论一个可行的方案,RFM模型。讨论的内容主要会分为两个部分:
本文主要介绍了RFM模型,以及使用pyspark实现利用RFM模型对用户分层的简单应用~让大家对RFM有一个更深刻的认识
客户分析就是根据客户信息数据来分析客户特征,评估客户价值,从而为客户制订相应的营销策略与资源配置。通过合理、系统的客户分析,企业可以知道不同的客户有着什么样的需求,分析客户消费特征与商务效益的关系,使运营策略得到最优的规划;更为重要的是可以发现潜在客户,从而进一步扩大商业规模,使企业得到快速的发展。
如果嫌麻烦,也可以直接跳到 RFM 4.0 的说明。如果说,RFM 4.0 的本文实现是自评 80 分,那么此前的 RFM 3.0 与之相比,大概只能是:30 分。RFM 4.0 的进步是全方位的,它不仅体现 PowerBI,DAX 的能力,体现业务逻辑,还体现了综合全部要素抽象简单统一的能力。
本文蕴藏杀机,PowerBI DAX 设计的诸多精华尽在一个模型,推荐仔细阅读。上篇文章写得少得可怜,很多战友提出严重抗议,要求继续揭示这其中的奥秘,好吧,你吩咐,我照办。
我们历史上做过两个 RFM 分析的模型,没有任何问题,但那时的制作更多地在研究 DAX 实现的极致,而现在则完全不同,我们将回归简单,用最简单的方式来实现如何支持业务的效果。最典型的案例莫过于我们发布的【ABC动态分析精悍版】,只要两个度量值就完成动态ABC分析。在很多教程中,动态 ABC 分析是最后的压轴案例,但在这里ABC分析是最简单的模型。我们会陆续再释放几个经过极度简化的非常棒的模型。
该数据包含了78周的购买历史。该数据文件中的每条记录包括四个字段。客户的ID(从1到2357不等),交易日期,购买的书籍数量,以及价值。我们被要求建立一个模型来预测消费者每周的购买频率、书籍的购买单位和购买价值。
在众多的客户关系管理(CRM)分析模式中,RFM 客户价值分析模型经常被提到。RFM 客户价值分析模型通过一个客户的近期购买行为、购买的总体频率及花费金额三项指标来描述该客户的价值状况。
RFM(Recency Frequency Monetary)模型是衡量客户价值和客户创利能力的重要工具和手段。在众多的客户关系管理(CRM)的分析模式中,RFM模型是被广泛提到的。
人物 今天向大家介绍沈浩老师。他是传媒大学新闻的教授,调查统计研究所的所长,数据挖掘的专家,数据可视化追逐者,商业智能的探索家,在大数据应用方面有丰富经验。有幸参加过沈老师的大数据应用方面的培训,收获颇多,希望大家以后多关注沈老师(新浪微博:@沈浩老师)——Froc,沉淀智慧工作室创始人。 文:沈浩 转自:数据化管理 正好刚帮某电信行业完成一个数据挖掘工作,其中的RFM模型还是有一定代表性,就再把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好
今天把数据挖掘RFM模型的建模思路细节与大家分享一下吧!手机充值业务是一项主要电信业务形式,客户的充值行为记录正好满足RFM模型的交易数据要求。 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)。 我早期两篇博文已详述了RFM思想和IBM Modeler操作过程,有兴趣的朋友可以阅读! RFM模型
会员价值度用来评估用户的价值情况,是区分会员价值的重要模型和参考依据,也是衡量不同营销效果的关键指标。
细分客户群是向客户提供个性化体验的关键。它可以提供关于客户行为、习惯与偏好的相关信息,帮助企业提供量身定制的营销活动从而改善客户体验。在业界人们往往把他吹嘘成提高收入的万能药,但实际上这个操作并不复杂,本文就将带你用简单的代码实现这一项目。
RFM 分析是一种用于洞悉客户价值和行为的强大工具,广泛应用于市场营销和客户关系管理。本文将介绍 RFM 分析如何在数据产品不充分的情况下实现以及如何利用RFM分析来优化营销策略,提高客户满意度,增加业务收益。
一个聪明的营销者懂得“了解你的客户”的重要性。营销人员不能仅关注于产生更多的点击量,他们必须遵循从增加点击率到保持、忠诚和建立客户关系的模式转变。 与其把整个客户群作为一个整体来分析,不如把他们分成同质化的群体,了解每个群体的特点,让他们参与相关的活动,而不是仅仅根据客户的年龄或地理位置来细分。 接下来介绍的RFM模型是最受欢迎的、易于使用的和有效的客户细分方法之一,它使市场营销人员能够分析客户行为。
很多会员伙伴问,ABC分析的2.0版已经出了,那什么时候出RFM的2.0版呢?现在。
随着数据分析的不断应用与发展,用户画像已经广为人知。其中的核心原理就是对用户进行分群,而用户分群的主要逻辑就是将数据进行标签化。
团队需要分析一个来自在线零售商的数据。该数据集包含了78周的购买历史。该数据文件中的每条记录包括四个字段。 客户的ID(从1到2357不等),交易日期,购买的书籍数量,以及价值。 我们被要求建立一个模型来预测消费者每周的购买频率、书籍的购买单位和购买价值。
上一篇讲了【用户画像高大上,但90%的人都做失败了!】以后,很多同学表示想看RFM,今天它来了。RFM是很传统的数据分析模型,几乎所有文章都会提到它,然而市面上流传的各种乱用、错用也非常多。今天我们系统讲一下
最近有朋友在问怎么做用户分群,刚好看到有个RFM客户价值模型,就移过来用python简单演示一下,感觉还是有一定的作用的。
大多数情况,我们可以根据业务本身进行分群,例如异动分析中的维度下钻。但实际业务中也会存在一些需要通过数据对指定对象进行分群,这里我将介绍下最常见的用户分群方法-RFM。
不会模型,做不了分析! 最近在做一个比较大型公司的案子,涉及到营销、销售、架构、财务等各方面的分析和研究,不得不说,在信息量很大、分析维度很多的时候,有准确的分析思路和结构真的起了非常大的梳理作用。因为,再多的信息量,只要在模型的框架内,在辨别是否是否有用后,进行合理的分类,会让整体的思路清晰很多。 在跟很多优秀的人交流学习之后,会发现他们之所以能够夸夸其谈,并且头头是道,不仅仅是因为知识储备够多,还在于拥有了准确的分析思路,这就是分析模型。 那么这些模型到底要怎么使用呢?下面就以RFM模型为例来做说明。
客户价值模型包含RFM模型,RFM模型仅仅是电商领域的客户价值模型,构建RFM模型的基本流程为:
一起来看个具体例子:某个打车出行APP,已按RFM格式,统计好用户数据(如下图,仅为示例数据100条),现领导要求:分析分析用户情况。要怎么分析呢?
作为万金油式的胶水语言,Python几乎无所不能,在数据科学领域的作用更是不可取代。数据分析硬实力中,Python是一个非常值得投入学习的工具。
在适当、有效的商务智能环境中,数据分析的质量必须得到保障。而确保数据分析质量的第一步就是根据问题需求从海量数据中提炼出真正所需的数据,因为这是发挥数据价值很重要的一个方面。通过数据的分析与可视化呈现可以更加直观的提供数据背后的秘密,从而辅助业务决策,实现真正的数据赋能业务。本文主要介绍在用户分层和用户标签中常常使用的一个模型——RFM模型。
在众多的客户关系管理分析模式中,应用最广泛的就是RFM模型,它可以通过一个客户的近期购买行为、购买的频率以及花了多少钱三项指标来描述客户的价值情况。
“PDFMV框架是问题-数据-特征-模型-价值五个英文字母的首字母组合而成,它是以问题为导向,数据为驱动,利用特征和模型从数据中学习到知识,以创造价值的系统化过程。”
大家可以叫我黄同学(博客名:Huang Supreme),一个应用统计硕士,爱好写一些技术博客,志在用通俗易懂的写作风格,帮助大家学到知识,学好知识!
1、分析目的:用户分类 2、数据获取:Excel 数据 3、清洗加工:Excel、Python 4、建立模型:RFM 5、数据可视化 6、结论与建议
重视用户留存是目前企业发展的共识之一,借助RFM模型对人群细分从而对用户进行精细化运营,是提升留存的重要方法。本文首先带你来了解到底什么是RFM模型。
在上一篇博客《一文带你硬核踏入机器学习的大门》中,已经为大家介绍了很多关于机器学习的基础内容。本篇博客,我们将结合当前阶段正在做的用户画像项目,为大家介绍RFM模型和KMeans聚类算法。
1、根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个神奇的要素,这三个要素构成了数据分析最好的指标:最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)。 2、RFM模型:R(Recency)表示客户最近一次购买的时间有多远,F(Frequency)表示客户在最近一段时间内购买的次数,M (Monetary)表示客户在最近一段时间内购买的金额。一般原始数据为3个字段:客户ID、购买时间(日期格式)、购买金额,用数据挖掘软件处理,加权
何为客户细分?是技术,更是艺术 客户细分是20世纪50年代中期由美国学者温德尔史密斯提出的,其理论依据在于顾客需求的异质性和企业需要在有限资源的基础上进行有效地市场竞争.是指企业在明确的战略业务模式和特定的市场中,根据客户的属性,行为,需求,偏好以及价值等因素对客户进行分类,并提供有针对性的产品,服务和销售模式.按照客户的外在属性分层,通常这种分层最简单直观,数据也很容易得到. 其实各个行业、各个角色都在不同的时期来划分不同的人群,有的性别划分(男and女),有的根据用户的粘性划分(活跃and沉默),但遇到
《RFM模型》 在数据分析中经常会进行用户分层,本文我们来了解一下常见的用户分层模型RFM。
RFM分析是美国数据库营销研究所Arthur Hughes提出的一种简单实用客户分析方法,他们发现客户数据中有桑神奇的要素,这三个要素构成了数据分析最好的指标,RFM分析也就是通过这个三个指标对客户进行观察和分类,针对不同的特征的客户进行相应的营销策略。
《数分狗必知必会》系列是一个简单介绍数分之外的领域的知识的小科普的系列。目前财务篇、人力资源篇、法律篇已经完结,有兴趣的朋友们可以点击合集按钮查看之前的内容。
本章通过分析某店铺会员消费数据,将每个会员的R、F、M得分值与平均值做对比 (每个要素好于平均值记为A,比平均值差记为B), 将会员分为以下八种,以便针对性做营销决策,实现精细化运营
本文来自于公众号读者投稿。作者Suke,数据爱好者,主攻方向:数据分析,数据产品化。
创业公司,老板对技术团队不满意,故空降来了一个职业经理人CTO来带队,并提了明确的要求,“必须要让不懂技术的人,看懂管理结果”,更具体的:要量化,要体系化,要有重点。
本文由CDA作者库成员麻赛原创,并授权发布 原文来自公众号麻大湿讲数据(ID:madashi_data)。 客户是最宝贵的资源,没有客户资源就没有生存和发展的土壤,面对海量客户,我们只能将有限的资源用
现在的互联网平台都有着海量的客户,但客户和客户之间有很大的差异,了解客户的行为方式对于充分理解用户与优化服务增强业务至关重要。而借助机器学习,我们可以实现更精细化地运营,具体来说,我们可以预测客户价值,即在特定时间段内将为公司带来多少价值。
本文旨在通过2015-2018的客户订单分析,了解各大区销售经营情况、不同偏好,并通过RFM模型来进行客户价值分类,实现定向营销。
对利用Python进行数据分析有一定的了解后,再结合一些业务知识把理论与实际相结合的需求也呼之欲出。将编程语言应用到实践中也还是一件比较有成就感的事情。本文源起是笔者最近常收到如下“骚扰”短信:
作者 CDA 数据分析师 在多数企业运营中,20%的客户占80%的销售额,20%的客户给我们提供了80%的利润。这20%的客户是我们的重要客户,是我们利润的来源。同时由于新客户的开发成本是老客户的5倍,因此客户关系管理显得越来越重要。今天我们来探讨企业中常用的客户价值分析的话题。 一、分析客户价值的方法 根据美国数据库营销研究所Arthur Hughes的研究,客户数据库中有三个重要指标: ① 最近一次消费(Recency) 最近一次消费意指上一次购买的时间。上一次消费时间越近的顾客对提供即时的商品或
解题思路 特征工程包括:特征构建->特征提取->特征选择。 选择特征:用户行为特征、用户消费特征、用户画像特征 为什么RFM模型:因为我们没有太多的用户行为数据,能用的数据比较有限。但是有一定的成交数据。只要有成交数据,就能进行RFM的分析。其次,模型的分层可解释性强。其他很多算法模型、机器学习模型,往往通过聚类进行用户的分层,对于业务来讲,不是很好解释。但RFM模型分成的用户类别,是非常好理解的。
领取专属 10元无门槛券
手把手带您无忧上云