Redis 是一种高性能的内存数据库,通过将数据存储在内存中,可以实现快速读写操作。在某些场景下,我们可能需要将数据库中的数据同步到 Redis 中,以提高读取性能和响应速度。本文将介绍如何使用 Redis 实现与数据库数据同步,并提供相应的代码示例。
一般来说,同事类之间的关系是比较复杂的,多个同事类之间互相关联时,他们之间的关系会呈现为复杂的网状结构,这是一种过度耦合的架构,即不利于类的复用,也不稳定。例如在下图中,有六个同事类对象,假如对象1发生变化,那么将会有4个对象受到影响。如果对象2发生变化,那么将会有5个对象受到影响。也就是说,同事类之间直接关联的设计是不好的。
世界上存在着各种各样的数据库,不同数据库有各自的应用场景,对于同一份数据,最开始可能使用关系型数据库(如MySQL)进行存储查询,使用Redis作为缓存数据库,当数据量较大时使用MySQL进行查询可能较慢,所以需要将数据同步到Elasticsearch或者列式数据库如Hbase中进行大数据查询。
停机迁移包括停服迁移与非停服迁移,停服迁移是选择某一时间点流量最少时停止所有服务,并在最短时间内完成数据迁移,此时需要注意停服时间;非停服迁移,即停止所有写数据服务,查询服务并不停止,同样要注意停服时间,防止对生产环境有较大影响。停机迁移完成后,还需要进行数据核对,通常首先要校验迁移前后数据量是否一致,其次还可对迁移前后数据逐条进行校验,还可进行流量回放,保证迁移前后业务表现完全一致。
这个技术方案的难点就在于:如何解析MySQL的Bin Log。但是这需要对binlog文件以及MySQL有非常深入的理解,同时由于binlog存在Statement/Row/Mixedlevel多种形式,分析binlog实现同步的工作量是非常大的
来源:dongshao.blog.csdn.net/article/details/107190925
https://dongshao.blog.csdn.net/article/details/107190925
canal是阿里的开源框架,其优势在于可以方便地同步数据库中增量数据到其他的存储应用(MySQL、Kafka、Elastic Search、HBase、Redis等等)。
一个对Java程序员进阶成长颇有研究的人,今天继续给大家带来新的一篇Java进阶指南。
作者个人研发的在高并发场景下,提供的简单、稳定、可扩展的延迟消息队列框架,具有精准的定时任务和延迟队列处理功能。自开源半年多以来,已成功为十几家中小型企业提供了精准定时调度方案,经受住了生产环境的考验。为使更多童鞋受益,现给出开源框架地址:
对于电商系统来说,商品搜索是其核心功能之一,如何能保证在海量的数据中,能低延时的搜索到关心的商品信息直接影响到用户的使用体验,在商品搜索中,如根据用户画像定向的做推荐,或是基于位置信息如美团O2O类搜索,这些个性化搜索是关系型数据库无法完成的,这时候搜索引擎ElasticSearch+Redis就能发挥关键作用。
在系统设计时,如果能预先看到一些问题,并在设计层面提前解决,就会给后期的开发带来很大的便捷。相反,有缺陷的架构设计可能会导致后期的开发工作十分艰难,甚至会造成“推倒重来”的情形。因此,在系统设计阶段,应该尽可能的规避项目开发中可能会遇到的各种问题。本文就选取了几个经典的问题进行介绍。
工作需要研究了下阿里开源的MySQL Binlog增量订阅消费组件canal,其功能强大、运行稳定,但是有些方面不是太符合需求,主要有如下三点:
在网络层的背后,每一个业务都需要数据的支撑,数据库的优化在整个系统中就显得至关重要了。 虽然 NoSQL 在并发性能上要优于传统的 DBA,但由于 MySQL 在扩展性等方面的优势,MySQL 依然作为企业级数据存储的首选。
我负责我司的报表系统,小胖是我小弟。随着业务量的增加,单实例顶不住,我就搭建了多个 Redis 实例,实现主从模式。
熟悉 Elastic Stack 的小伙伴对上面的图会感觉并不新鲜,对其中的技术栈也如数家珍,如下图一把梭走起:
这种数据同步的代码跟业务代码糅合在一起会不太优雅,能不能把这些数据同步的代码抽出来形成一个独立的模块呢,答案是可以的。
如果像面试官说的这种场景,再使用上面我提到的AOF缓冲区就有点浪费内存空间了。所以Redis会将主服务器的这条Del删除命令,发送给从服务器。
所谓的一致性问题是指,在同时使用缓存和数据库的情况下,要确保数据在缓存与数据库中的更新操作保持同步。也就是当对数据进行修改时,无论是先修改缓存还是先修改数据库,最终都要保证两者的数据是一样的,不会出现数据不一样的问题。
在实际应用中,我们经常需要把 MySQL 的数据同步至其它数据源,也就是在对 MySQL 的数据进行了新增、修改、删除等操作后,把该数据相关的业务逻辑变更也应用到其它数据源,例如:
实现思路:存储redis数据用RedisTemplate.opsForValue进行数据存储,在数据发生改变的时候,优先向redis中更新数据,然后先一个set集合中add新的数据的key值。业务端的操作就结束了,接下来通过一个专门的定时任务服务,通过设置@Scheduled(fixedDelay = 500)设置一个任务专门从上面的存放key值的set中pop出key值,然后从redis中查询出来,再通过这个key值更新到对应的mysql数据库中,这个任务从启动就开始执行,执行结束后等待fixedDelay后设置的毫秒时间,又接着执行下一次该任务。以此往复,就会将前台发送至set中的key对应的redis数据更新至mysql中,以实现数据同步。
2020年新版,对部分组件的描述进行了更新。19年文章参见 这里 。如果你在做选型方面的工作,或者想了解一些现在正在流行的技术,那么这篇文章正好适合你。有什么疑问,可以加我好友 (微信号:xjjdog0),进群讨论。
如今大型的IT系统中,都会使用分布式的方式,同时会有非常多的中间件,如redis、消息队列、大数据存储等,但是实际核心的数据存储依然是存储在数据库,作为使用最广泛的数据库,如何将mysql的数据与中间件的数据进行同步,既能确保数据的一致性、及时性,也能做到代码无侵入的方式呢?如果有这样的一个需求,数据修改后,需要及时的将mysql中的数据更新到elasticsearch,我们会怎么进行实现呢?
前不久在工作过程中用到了kafka中间件,简单来说是个消息队列,除了支持高吞吐量、发布订阅等功能外,它还支持回放,我可以通过修改偏移量重新获取数据,这个功能是一个非常常见的使用场景,也是我选择kafka的一个重要原因。
最近在跟一位粉丝聊天,聊起来了做离线数仓时该用那些技术栈。于是根据我的经验和参考一些资料于就有本篇文章。在这里我会分享三个案例,仅供参考。
异地多活看字面意思 :不通的地方部署服务。前段时间发生的B站挂掉的事情,网上众说纷纭,有的说是有机房着火了,导致服务宕机。那对于这种突发的情况,我们应该如何应对呢?包括说有些地方地震了导致机房宕机等等。
数栈是云原生—站式数据中台PaaS,我们在github和gitee上有一个有趣的开源项目:FlinkX,FlinkX是一个基于Flink的批流统一的数据同步工具,既可以采集静态的数据,也可以采集实时变化的数据,是全域、异构、批流一体的数据同步引擎。大家喜欢的话请给我们点个star!star!star!
分享议题:《深入数据同步技术研究》
分布式系统,通过数据冗余,来保证数据的安全。要写一个分布式系统,一道绕不过去的坎,那就是数据同步。
随着客户上云的加快,客户越来越希望直接采用云上的数据库系统支撑业务发展,作为服务商来讲,了解云上的数据库的应用场景及常见特性成为必然。否则,将出现与客户交流困难,影响项目成效的麻烦事。今天我们讲五种常见的云数据库,这些内容也是在与客户沟通交流中的常见问题。
Tapdata Cloud 是国内首家异构数据库实时同步云平台,目前支持 Oracle、MySQL、PG、SQL Server、MongoDB、ES 、达梦、Kafka之间的数据同步,即将支持 DB2、Sybase ASE、Redis、GBase、GaussDB 等,并对用户永久免费。
企业业务敏感程度差异,对容灾指标RPO&RTO要求也不同。之前两篇文章主要介绍数据冷备,主要特点是数据备份存储非实时,备份系统存储数据通常昨天的数据,当灾难真正来临的时候,今天新产生的数据会丢失情况。对于企业核心业务来讲,业务恢复(RTO)可以接受小时级别,但是对于数据无法接受丢失,即RPO接近为“零”。结合腾讯云数据备份能力,本文重点介绍数据热备解决方案,旨在让客户上好云,用好云,管好云。
越来越多的企业在数字化转型和上云进程中选择混合云的形态(云+自建 IDC 或云+其他厂商云)来进行容灾建设,一方面不会过度依赖单一云厂商,另一方面还能充分利用已有的线下 IDC 资源。
随着公司规模的增长,对大数据的离线应用开发的需求越来越多,这些需求包括但不限于离线数据同步(MySQL/Hive/Hbase/Elastic Search 等之间的离线同步)、离线计算(Hive/MapReduce/Spark 等)、定时调度、运行结果的查询以及失败场景的报警等等。
大多数情况下,应用架构设计不好,引入什么新存储,引入什么DDD,治标不治本,都是扯淡。
一、开源项目简介 bboss数据同步可以方便地实现多种数据源之间的数据同步功能,支持增、删、改数据同步,本文为大家程序各种数据同步案例。 二、开源协议 使用Apache-2.0开源协议 三、界面展示 四、功能概述 通过bboss,可以非常方便地采集 database/mongodb/Elasticsearch/kafka/hbase/本地或者Ftp日志文件源数据,经过数据转换处理后,再推送到目标库elasticsearch/database/file/ftp/kafka/dummy/logger。 数
Tapdata Cloud 是国内首家异构数据库实时同步云平台,目前支持Oracle、MySQL、PG、SQL Server、MongoDB、ES 、达梦、Kafka、GP、MQ、ClickHouse、Hazelcast Cloud、ADB MySQL、ADB PostgreSQL、KunDB之间的数据同步,即将支持 DB2、Sybase ASE、Redis、GBase、GaussDB 等,并对用户永久免费。
高可用SpringCloud微服务与docker集成实现动态扩容实战
Tapdata Cloud 是国内首家异构数据库实时同步云平台,目前支持Oracle、MySQL、PG、SQL Server、MongoDB、ES 、达梦、Kafka、阿里云数仓 AnalyticDB MySQL、GP、MQ之间的数据同步,即将支持 DB2、Sybase ASE、Redis、GBase、GaussDB 等,并对用户永久免费。
(1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1)
这些面试题来自于我的老乡读者分享,很厉害,2年经验,面试几个月拿下了N个Offer,包括滴滴、有赞和阿里这些一二线公司。
会员系统是一种基础系统,跟公司所有业务线的下单主流程密切相关。如果会员系统出故障,会导致用户无法下单,影响范围是全公司所有业务线。所以,会员系统必须保证高性能、高可用,提供稳定、高效的基础服务。
Redis基于内存,读写速度快,也可做持久化,但是内存空间有限,当数据量超过内存空间时,需扩充内存,但内存价格贵。
互联网公司发展到一定的规模,系统的高可用就变得极其重要。为了应对那些随时可能发生的意外,“多活”在如今互联网公司好像变得是必备的手段了。甚至一些公司发生一些 P0 事故之后,多活也会出现在 case study 的列表之内。
在当今互联网行业,大多数人互联网从业者对"单元化"、"异地多活"这些词汇已经耳熟能详。而数据同步是异地多活的基础,所有具备数据存储能力的组件如:数据库、缓存、MQ等,数据都可以进行同步,形成一个庞大而复杂的数据同步拓扑。
这一期首先聊聊 Kafka 数据同步到 ClickHouse 的其中一个方案:通过 Kafka 引擎方式同步,下面进入实际操作过程(环境:CentOS7.4):
mysql数据库做分页用limit关键字,它后面跟两个参数startIndex和pageSize
缓存穿透:查询一个不存在的数据,mysql查询不到数据也不会直接写入缓存,就会导致每次请求都查数据库
领取专属 10元无门槛券
手把手带您无忧上云