几个月以来,我一直对序数回归与项目响应理论(IRT)之间的关系感兴趣。 在这篇文章中,我重点介绍Rasch分析。
Zone of Proximal Development(ZPD)是由心理学家Vygotsky提出来的一种学习理论,是目前自适应学习常用的思考模型。他认为,能力高的学习者在学习难度低的知识时会感觉无聊,而能力低的人在学习难度高的知识时会感觉焦虑,他们只有在学习难度适中的知识时才会实现有效学习。这个难度适中的区域称为近端发展区(Zone of Proximal Development,简称ZPD)。
为此,NBA休斯顿火箭队也正式对外宣称,该组织近期遭到了勒索软件攻击,而发动攻击的网络犯罪分子就是Babuk黑客团伙。
晓查 发自 凹非寺 量子位 | 公众号 QbitAI YouTube视频下载神器youtube-dl还在被追杀。 这款在GitHub上累计收获100k+ Star的开源工具,2020年末遭到了美国唱片协会(RIAA)的投诉而一度下架。 最近,索尼、华纳、环球三大唱片巨头,又在德国起诉一家名为Uberspace的小型网页托管服务商。 Uberspace不提供任何youtube-dl源代码,只是托管其官方网站,并提供链接到GitHub。 当初GitHub顶住压力让youtube-dl重新上架,既然动不了Git
梦境研究以激动人心的方式步入了现代,来自麻省理工学院(MIT)和其他机构的研究人员创建了一个社区,致力于推进这一领域、为这项研究正名并开拓进一步研究的机遇。
来源:知乎专栏 作者:Lukas Biewald 本文长度为2500字,建议阅读5分钟 本文为你介绍清华大学的龙明盛老师在ICML-15上提出的深度适配网络。 这周五下午约见了机器学习和迁移学习大牛、清华大学的龙明盛老师。老师为人非常nice,思维敏捷,非常健谈!一不留神就谈了1个多小时,意犹未尽,学到了很多东西!龙明盛老师在博士期间(去年博士毕业)发表的文章几乎全部是A类顶会,他在学期间与世界知名学者杨强、Philip S. Yu及Michael I. Jordan多次合作,让我非常膜拜!这次介绍他在
基本的R包已经实现了传统多元统计的很多功能,然而CRNA的许多其它包提供了更深入的多元统计方法,下面做个简要的综述。多元统计的特殊应用在CRNA的其它任务列表(task view)里也会提及,如:排序(ordination)会在Environmetrics(http://cran.r-project.org/web/views/Environmetrics.html)里说到;有监督的分类方法能在MachineLearning(http://cran.r-project.org/web/views/Machi
在这最后一章,这本书接近尾声。我将首先回顾我在前面十章中讨论的内容,然后给你三条建议,并提供一些资源来进一步探索我们触及的相关主题。最后,如果您有任何问题、评论或新的命令行工具要分享,我提供了一些与我联系的方法。
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/50651464
最近清华大学施路平老师团队的“天机”芯片引起了公众的广泛兴趣。我们课题组有幸参与了该项目的部分研究,主要是贡献了用连续吸引子神经网络模型(CANN)来实现自行车的视觉跟踪。很多朋友因而问起了CANN的细节,我正好借此机会介绍一下CANN。CANN及其应用是我课题组在过去20年的重点研究方向。简单说,CANN是大脑编码、储存、运算、及交流信息的正则化的(即普适性的)神经网络计算模型;硬件实现CANN对类脑智能的未来发展具有重要意义。
作者 | 王晋东不在家 《小王爱迁移》之一:迁移成分分析(TCA)方法简介 之前整理总结迁移学习资料的时候有网友评论,大意就是现在的类似资料大全的东西已经太多了,想更深入地了解特定的细节。从这篇文章开始我将以《小王爱迁移》为名写一系列的介绍分析性的文章,与大家共享迁移学习中的代表性方法、理论与自己的感想。由于我的水平有限,请各位多多提意见,我们一起进步。今天第一篇必须以我最喜爱的杨强老师的代表性方法TCA为主题!(我的第一篇文章也是基于TCA做的) 问题背景 机器学习中有一类非常有效的方法叫做
---- 新智元推荐 来源:专知(ID:Quan_Zhuanzhi) 【新智元导读】机器学习领域最具影响力的学术会议之一的ICML将于2018年7月10日-15日在瑞典斯德哥尔摩举行。ICML是机器学习领域顶级会议,由国际机器学习协会(International Machine Learning Society)主办。今年人工智能顶会JCAI2018也将于 7月 13 日 - 7 月 19 日 在瑞典斯德哥尔摩举行,很多人可能同时会参加这两个会议,期待七月份的盛会。 详细录用名单日前已经公布,可参见
流行学习自从2000年在Science上被提出来以后,就成为了机器学习和数据挖掘领域的热门问题。它的基本假设是,现有的数据是从一个高维空间中采样出来的,所以,它具有高维空间中的低维流形结构。流形就是一种几何对象(就是我们能想象能观测到的)。通俗点说就是,我们无法从原始的数据表达形式明显看出数据所具有的结构特征,那我把它想象成是处在一个高维空间,在这个高维空间里它是有个形状的。一个很好的例子就是星座。满天星星怎么描述?我们想象它们在一个更高维的宇宙空间里是有形状的,这就有了各自星座,比如织女座、猎户座。流形学习的经典方法有lsomap、locally linear embedding、laplacian eigenmap等。
领取专属 10元无门槛券
手把手带您无忧上云