当使用逻辑回归处理多标签的分类问题时,如果一个样本只对应于一个标签,我们可以假设每个样本属于不同标签的概率服从于几何分布,使用多项逻辑回归(Softmax Regression)来进行分类:
Pytorchtask·1——PyTorch的基本概念1. 什么是PyTorch,为什么选择PyTorch2. 配置Python环境3. 准备Python管理器4. Pytroch的安装5.PyTorch基础概念6. 通用代码实现流程(实现一个深度学习的代码流程)
MTCNN,Multi-task convolutional neural network(多任务卷积神经网络),将人脸区域检测与人脸关键点检测放在了一起,总体可分为P-Net、R-Net、和O-Net三层网络结构。它是2016年中国科学院深圳研究院提出的用于人脸检测任务的多任务神经网络模型,该模型主要采用了三个级联的网络,采用候选框加分类器的思想,进行快速高效的人脸检测。这三个级联的网络分别是快速生成候选窗口的P-Net、进行高精度候选窗口过滤选择的R-Net和生成最终边界框与人脸关键点的O-Net。和很多处理图像问题的卷积神经网络模型,该模型也用到了图像金字塔、边框回归、非最大值抑制等技术。
多年以来由于全局解释器锁(GIL)的存在,导致 Python 生态一直就没有真正的多线程,也就是说所有线程都运行在同一个核心上,不管你的 CPU 物理上有多少个核心它只用一个。那场面真的是一核有难 8 核围观。
之前搞机器学习的那帮人都喜欢用Python,所以Python慢慢就积攒了很多优秀的机器学习库,所谓的库,你就理解为别人封装好的一些具有某些功能的模块,我们可以通过调用这些模块来实现某些功能,而不用自己从头写代码; 2、Python真的是一个极易上手的语言,语法很简单,容易理解,且实现同一功能的代码量会比一般语言要少一些,李杰克上手python的过程除了最开始熟悉语法的阶段比较无聊烦躁外,后面都没有太不适的感觉。 就算你不搞机器学习,如果要学编程,那Python也是个极佳选择,因为Python这货实在腻害,机
作者:小傅哥 博客:https://bugstack.cn ❝沉淀、分享、成长,让自己和他人都能有所收获!😜❞ 一、技术调研,很激动 二、风浪越大,鱼越贵 三、环境配置,搞起来 1. Python 环境 2. pip 指令安装 3. Tensorflow 四、跑个模型,验证下 ---- 最近 ChatGPT 很火,火到了各行各业。记得去年更多的还是码农最新体验后拿它搜代码,现在各行各业都进来体验,问它咋理财、怎么写报告和给小孩起名。😂 也因此让小傅哥在头条的一篇关于 ChatGPT 的文章都有了26
1 机器学习介绍 1.1 什么是机器学习 1.2 机器学习的应用 1.3 机器学习基本流程与工作环节 1.3.1 数据采集与标记 1.3.2 数据清洗 1.3.3 特征选择 1.3.4 模型选择 1.3.5 训练和测试 1.3.6 模型使用 1.4 机器学习算法一览 2 Python 3 机器学习软件包 2.1 多种机器学习编程语言比较 2.2 开发环境 Anaconda 搭建 2.2.1 Windows 2.2.2 macOS 2.2.3 Linux 2.3 Jupyter Notebook 介绍 2.4 Spyder 介绍 2.5 Numpy 介绍 2.5.1 Numpy 数组 2.5.2 Numpy 运算 2.5.3 Numpy Cheat Sheet 2.6 Pandas 介绍 2.6.1 十分钟入门 pandas 2.6.2 Pandas Cheat Sheet 2.7 Matplotilb 介绍 2.7.1 Pyplot 教程 2.7.2 plots 示例 2.7.3 Matplotilb Cheat Sheet 2.8 scikit-learn 介绍 2.8.1 scikit-learn 教程 2.8.2 scikit-learn 接口 2.8.3 scikit-learn Cheat Sheet 2.9 数据预处理 2.9.1 导入数据集 2.9.2 缺失数据 2.9.3 分类数据 2.9.4 数据划分 2.9.5 特征缩放 2.9.6 数据预处理模板 3 回归 3.1 简单线性回归 3.1.1 算法原理 3.1.2 预测函数 3.1.3 成本函数 3.1.4 回归模板 3.2 多元线性回归 3.3 多项式回归 3.3.1 案例:预测员工薪水 3.4 正则化 3.4.1 岭回归 3.4.2 Lasso 回归 3.5 评估回归模型的表现 3.5.1 R平方 3.5.2 广义R平方 3.5.3 回归模型性能评价及选择 3.5.4 回归模型系数的含义 4 分类 4.1 逻辑回归 4.1.1 算法原理 4.1.2 多元分类 4.1.3 分类代码模板 4.1.4 分类模板 4.2 k-近邻 4.2.1 算法原理 4.2.2 变种 4.3 支持向量机 4.3.1 算法原理 4.3.2 二分类线性可分 4.3.3 二分类线性不可分支持 4.3.4 多分类支持向量机 4.3.5 Kernel SVM - 原理 4.3.6 高维投射 4.3.7 核技巧 4.3.8 核函数的类型 4.4 决策树 4.4.1 算法原理 4.4.2 剪枝与控制过拟合 4.4.3 信息增益 4.4.4 最大熵与EM算法 5 聚类 5.1 扁平聚类 5.1.1 k 均值 5.1.2 k-medoids 5.2 层次聚类 5.2.1 Single-Linkage 5.2.2 Complete-Linkage 6 关联规则 6.1 关联规则学习 6.2 先验算法Apriori 6.3 FP Growth 7 降维 7.1 PCA(主成分分析) 7.2 核 PCA 7.3 等距特征映射IsoMap 8 强化学习 8.1 置信区间上界算法 8.1.1 多臂老虎机问题
可以说随着人工智能技术的发展,Python语言也迎来了新的生机。由于Python易上手,语法简洁,工具库多等特点,Python已成为人工智能领域最流行的语言。
logistic回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。逻辑回归为发生概率除以没有发生概率再取对数,且因变量为二分类的分类变量或某事件的发生率。
人脸检测是一种在多种应用中使用的计算机技术,可以识别数字图像中的人脸。人脸检测还指人类在视觉场景中定位人脸的过程。
之前担任数据工程师时,由于不熟悉机器学习的流程,团队分工又很细,沟通不畅,机器学习工程师也没有和我谈论数据质量的问题,对于异常值,我采用的做法只是简单地过滤掉,或者将其置为0,而没有考虑到一些异常值可能会影响模型的准确度。因此作为一名数据工程师,了解机器学习的完整流程,还是很有必要的。
在机器学习应用中,有些领域(如金融风控)的模型决策很看重业务的解释性,通过业务先验的知识加以调整并监控模型、以创造更值得信任的、安全可靠的模型。
学习数据科学很久了,从数据探索、数据预处理、数据模型搭建和部署这些过程一直有些重复性的工作比较浪费时间,尤其当你有个新的想法想要快速尝试下效果的时候,效率很低。
关键时刻,第一时间送达! 本文经授权转自人工智能头条。 Python 已经成为机器学习及其他科学领域中的主流语言。它不但与多种深度学习框架兼容,而且还包含优秀的工具包和依赖库,方便我们对数据进行预处理和可视化操作。 据最新消息,到 2019 年底,Numpy 等很多科学计算工具包都将停止支持 Python 2版本,而 2018 年后 Numpy 的所有新功能版本也都将只支持 Python 3。 为了使初学者能够轻松地从 Python 2 向 Python 3 实现迁移,我收集了一些 Python 3 的
职场中一贯有“金三银四”、“金九银十”的说法。如果你是一名正在求职或准备跳槽的程序员,不妨趁着这两个月时间好好准备一下。
Happiness is a way of travel. Not a destination.
Boosting、Bagging和Stacking是集成学习(Ensemble Learning)的三种主要方法。Boosting是一族可将弱学习器提升为强学习器的算法,不同于Bagging、Stacking方法,Boosting训练过程为串联方式,弱学习器的训练是有顺序的,每个弱学习器都会在前一个学习器的基础上进行学习,最终综合所有学习器的预测值产生最终的预测结果。
从今天开始,我将为大家逐步介绍Mask RCNN这个将检测和分割统一起来的框架的具体原理以及详细代码解读,项目地址为https://github.com/matterport/Mask_RCNN,基于TensorFlow1.x和Keras框架实现。
逻辑回归是一种用于解决分类问题的统计学方法,尤其适用于二分类问题。在本文中,我们将使用Python来实现一个基本的逻辑回归模型,并介绍其原理和实现过程。
编译 | 林椿眄 编辑 | Donna Python 已经成为机器学习及其他科学领域中的主流语言。它不但与多种深度学习框架兼容,而且还包含优秀的工具包和依赖库,方便我们对数据进行预处理和可视化操作。 据最新消息,到2019 年底,Numpy 等很多科学计算工具包都将停止支持Python 2版本,而 2018 年后 Numpy 的所有新功能版本也都将只支持 Python 3。 为了使初学者能够轻松地从 Python 2 向 Python 3 实现迁移,我收集了一些 Python 3 的功能,希望对大家有所帮助
前段时间和大家一起分享了一篇关于学习方法内容 《大牛与搬运工的差距——学习方法的力量》。我们将学习过程分成八步,并借鉴了敏捷开发的迭代思想,以达到自我迭代学习的效果。行胜于言,理论结合实践才是王道,所以本文我将基于前面的学习方法,分享我是如何学习python的。
本项目会手把手带着你使用机器学习算法,对伯克利附近的餐馆根据用户的评价进行聚类,并在网页当中展示。
**建立模型通过长文本数据正文(article),预测文本对应的类别(class) **
想必大家都有经历,处于多种原因有个很好的朋友不再跟你聊天了,那么可不可以用他的微信聊天记录来大致还原一下这个人的聊天习惯语气甚至是喜欢发的表情包等等呢?
此数据来自 Lianjia.com.csv文件包含名称,租赁类型,床位数量,价格,经度,纬度,阳台,押金,公寓,描述,旅游,交通,独立浴室,家具,新房源,大小,方向,堤坝,电梯,停车场和便利设施信息。
最近我们被客户要求撰写关于链家租房的研究报告,包括一些图形和统计输出。 1 利用 python 爬取链家网公开的租房数据;
最近我们被客户要求撰写关于租房数据的研究报告,包括一些图形和统计输出。 1 利用 python 爬取链家网公开的租房数据;
一个简单的方法就是将每一个特征的幂次方添加为一个新的特征,然后在这个拓展的特征集上进行线性拟合,这种方法成为多项式回归。
根据爱彼迎的2009-2014年的用户数据,预测用户第一次预约的目的地城市。同时分析用户的行为习惯。
机器学习是一种从数据生成规则、发现模型,来帮助我们预测、判断、分组和解决问题的技术。(机器学习是一种从数据中生产函数,而不是程序员直接编写函数的技术)
李宏毅老师现任台湾大学电气工程助理教授,研究重点是机器学习,特别是深度学习领域。他有一系列公开的机器学习课程视频,在机器学习领域是很多人入门的教材,人气不输吴恩达的 Coursera 机器学习课程。
在当前海量数据和资源的情况下,面对客户需求,如何找准需求标的和问题核心,并围绕该目标问题挖掘数据、确定市场重要关联因素、分层分类筛选可能关联因素,是当前数据分析运用的关键
原博客简介:Predictive Hacks是与数据科学相关的在线资源中心。该博客是由一群数据科学家运营,专注于讲解在各种领域如何运用大数据技术(从机器学习和人工智能到业务领域)。
https://pan.baidu.com/s/1tnMHvLWB_qXyuoPiBgnhaQ
近年来,机器学习在各个领域都取得了重大突破,在生命科学、医学领域应用的也越来越多。但想要真正建立一个模型仍费时费力,要花相当一段时间去学习(可参考我之前写的相关笔记)。而且即使是高水平的人工智能专家,在大数据智能分析机器学习建模时,也主要依靠人工经验,建模过程费时费力,缺少有效方法。
默认情况下,逻辑回归仅限于两类分类问题。一些扩展,可以允许将逻辑回归用于多类分类问题,尽管它们要求首先将分类问题转换为多个二元分类问题。
【导读】关于机器学习的学习资料从经典书籍、免费公开课到开源项目应有尽有,可谓是太丰富啦,给学习者提供了极大的便利。但网上比比皆是的学习资料大部分都是英文材料,这可难倒了英语不好的学习者,单词不认识,理解不到位。小编不禁想问:就真的就没办法了嘛。其实也不尽然,中文还是有一些不错的学习资料的,像周志华老师的西瓜书,李航老师的统计学习方法等等都是相当经典的学习资料。今天的主角LeeML-Notes也是和一门中文经典视频课程--台大李宏毅的机器学习相关。
本文介绍了逻辑回归并在R语言中用逻辑回归(Logistic回归)模型分类预测病人冠心病风险数据
pygame是一组功能强大而有趣的模块,可用于管理图形、动画乃至声音,可以轻松的开发复杂的游戏。使用pygame来处理在屏幕上绘制图像等任务,就不用考虑众多繁琐而艰难的编码工作,而可以将重点放在程序的高级逻辑上。 但是在安装pygame时,却遇到比较苦恼的事情,就是有很多版本该怎么选择一个适合电脑系统的版本呢?并且有pygame有众多的版本,版本的名称一大串,都代表什么意思呢?刚刚接触确实是一脸萌萌的,接下来就简要的介绍两种系统的安装吧,windowns和linux:
最近我们被客户要求撰写关于逻辑回归的研究报告,包括一些图形和统计输出。 本文介绍了逻辑回归并在R语言中用逻辑回归(Logistic回归)模型分类预测病人冠心病风险数据
根据已有的车祸数据信息,计算严重车祸发生率最高和最低的地区;并对车祸发生严重程度进行因素分析,判断哪些外界环境变量会影响车祸严重程度,分别有怎样的影响。
李宏毅老师的机器学习视频是机器学习领域经典的中文视频之一,也被称为中文世界中最好的机器学习视频。李老师以幽默风趣的上课风格让很多晦涩难懂的机器学习理论变得轻松易懂,他将理论知识与有趣的例子结合在课堂上展现,并且对深奥的理论知识逐步推导,保证学习者能够学习到问题的精髓所在。比如老师会经常用宝可梦来结合很多机器学习算法。对于想入门机器学习又想看中文讲解的人来说绝对是非常推荐的。
领取专属 10元无门槛券
手把手带您无忧上云