首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python量化 教你认清现实!

    老读者都知道,Python的一个应用方向就是——量化交易,恰好最近收到了清华出版社赠送的 《深入浅出Python量化交易实战》 一书,因为平时对数据科学和机器学习都比较感兴趣,简单试读了一下。...此外,还会通过文字+视频的方式,给大家分享如何用Python获取A股数据,以及如何用Python进行的仓位控制。...,实验如下: yfinance 另外,yfinance也有类似的功能,使用方法也很简单 Tushare 当然,说到用 Python 进行量化交易,肯定少不了 Tushare 但若要使用完整功能,需要一定的积分...JoinQuant 最后一种方法来获取数据就是用现成的量化平台。这里我用joinquant实验了一下, 可以看到,通过平台获取数据,还是比较简单的。...接着,再为大家分享如何用Python进行的仓位控制!

    80710

    Python——量化分析介绍(七)

    这是奔跑的键盘侠的第112篇文章 依旧,先贴一下目录: ├── README ├── MyQuant_v1 #量化分析程序目录 ├── __init__.py ├── data #数据处理目录...code:1,date:1})建立数据集索引,还有前复权、后复权的数据集都建立索引,爬取数据的速度就会快非常多,至于为何,暂时还没得空去研究 先用起来再说 2 basic_crawler.py重写 《Python...——量化分析常用命令介绍(五)》中贴的basic_crawler.py代码一跑起来发现很多问题,最关键的一点是数据类型不一致不断抛出异常的问题,至于为啥,先一掠而过……翻新完的代码如下: #!.../usr/bin/env python3.6 # -*- coding: utf-8 -*- # @Time : 2019-07-31 21:12 # @Author : Ed Frey # @

    90732

    Python中的向量化编程

    在Andrew Ng的>课程中,多次强调了使用向量化的形式进行编码,在深度学习课程中,甚至给出了编程原则:尽可能避免使用for循环而采用向量化形式。...许多Numpy运算都是用C实现的,相比Python中的循环,速度上有明显优势。所以采用向量化编程,而不是普通的Python循环,最大的优点是提升性能。...另外相比Python循环嵌套,采用向量化的代码显得更加简洁。...总之,无论你有多长的数据列表并需要对它们进行数学转换,都强烈考虑将这些Python数据结构(列表或元组或字典)转换为numpy.ndarray对象并使用固有的矢量化功能。...更多关于numpy向量化编程的指导,可以参考这本开源的在线书籍:From Python to Numpy )

    2.2K30

    python量化交易包talib安装方法

    ; 如果你的系统是x86平台,在安装了anaconda 的基础上,可以直接使用pip安装,命令如下: pip install talib 如果你的系统是x64平台,直接使用上述命令安装会报错 原因在于python...下载推荐使用加州大学的python扩展库,地址:https://www.lfd.uci.edu/~gohlke/pythonlibs/ 从上面下载的这个:TA_Lib-0.4.17-cp27-cp27m-win_amd64....whl 然后在windows的cmd里面输入命令: pip install TA_Lib-0.4.17-cp27-cp27m-win_amd64.whl 注意事项:本人安装的python环境是2.7版的...,所以下载TA_Lib-0.4.17-cp27-cp27m-win_amd64.whl这个64位版本,如果你使用的python3.5或python3.7,请下载对应版本,否则安装不会成功。...python3.5的64位平台:TA_Lib-0.4.9-cp35-none-win_amd64.whl python3.7的64位平台:TA_Lib-0.4.9-cp37-none-win_amd64

    2.8K10

    Python+numpy实现函数向量化

    Python本身对向量操作的支持并不是很好,需要借助列表推导式或函数式编程来实现,例如: >>> import random # 生成随机测试数据 >>> x = random.sample(range...-66, 282, 231] # 函数式编程,map,模拟向量加法 >>> list(map(lambda a, b: a+b, x, y)) [1067, 488, 1486, 998, 327] Python...扩展库numpy本身提供的大量函数都具有向量化的特点,并且可以把普通的Python函数向量化,可以使得Python操作向量更方便: >>> import numpy as np # 定义一个普通的减法函数...>>> def sub(a, b): return a-b # 把减法函数向量化 >>> vecSub = np.vectorize(sub) >>> print(vecSub(x,y)) [-171...-370 -66 282 231] # 把加法lambda表达式向量化 >>> vecAdd = np.vectorize(lambda a, b: a+b) >>> print(vecAdd

    3.1K50
    领券