探索性数据分析、数据清洗与预处理和多元线性回归模型构建完毕后,为提升模型精度及其稳健性,还需进行许多操作。方差膨胀因子便是非常经典的一步,原理简单,实现优雅,效果拔群。
来源:调度与优化算法的集结地本文约1000字,建议阅读5分钟原理: 表面上理解很简单,只要学过高中数学就没问题。 多元线性回归是一种建立多个自变量和一个因变量之间关系的模型。其原理基于多元线性回归方程,该方程可以描述因变量与多个自变量之间的线性关系。多元线性回归方程通常采用以下形式: Y = β0 + β1X1 + β2X2 + ... + βpXp + ε 其中,Y 是因变量,X1、X2、...、Xp 是自变量,β0、β1、β2、...、βp 是回归系数,ε 是误差项。回归系数是多元线性回归模型的核心参数
AIC即赤池值,是衡量模型拟合优良性和模型复杂性的一种标准,在建立多元线性回归模型时,变量过多,且有不显著的变量时,可以使用AIC准则结合逐步回归进行变量筛选。AICD数学表达式如下: A I C = 2 p + n ( l o g ( S S E / n ) ) AIC=2p+n(log(SSE/n)) AIC=2p+n(log(SSE/n)) 其中, p p p是进入模型当中的自变量个数, n n n为样本量, S S E SSE SSE是残差平方和,在 n n n固定的情况下, p p p越小, A I C AIC AIC越小, S S E SSE SSE越小, A I C AIC AIC越小,而 p p p越小代表着模型越简洁, S S E SSE SSE越小代表着模型越精准,即拟合度越好,综上所诉, A I C AIC AIC越小,即模型就越简洁和精准。
今天是读《python数据分析基础》的第17天,读书笔记的内容为变量的标准化。 在进行 在建模的时候,会遇到不同的自变量之间的量纲差距很大的情况,如输入变量有年龄和身高(身高以m为单位)时,年龄的范围为(0-100],而身高的范围则是(0,2.5]。此时两个变量之间的取值范围差了一个数量级。若采用这两个变量进行建模,则有可能出现这样的情况:年龄对预测值的影响远高于身高。这意味着年龄的影响程度被高估,身高的影响程度被低估。 为使得变量的影响程度能被正确估计,提高模型的预测精度,对自变量进行标准化是一个有效且可行的方式。 以下将用python演示对自变量进行标准化的操作:
回归最初是遗传学中的一个名词,是由英国生物学家兼统计学家高尔顿首先提出来的,他在研究人类身高的时候发现:高个子回归人类的平均身高,而矮个子则从另一方向回归人类的平均身高; 回归整体逻辑 回归分析(Regression Analysis) 研究自变量与因变量之间关系形式的分析方法,它主要是通过建立因变量y与影响它的自变量 x_i(i=1,2,3… …)之间的回归模型,来预测因变量y的发展趋向。 回归分析的分类 线性回归分析 简单线性回归 多重线性回归 非线性回归分析 逻辑回归 神经网络 回归分析的步骤 根据预
如果将所有自变量用于线性回归或逻辑回归的建模,将导致模型系数不能准确表达自变量对Y的影响。
前面我们讲过了多元线性回归。这一篇我们来讲讲逐步回归。什么是逐步回归呢?就是字面意思,一步一步进行回归。
「多元线性回归模型」非常常见,是大多数人入门机器学习的第一个案例,尽管如此,里面还是有许多值得学习和注意的地方。其中多元共线性这个问题将贯穿所有的机器学习模型,所以本文会「将原理知识穿插于代码段中」,争取以不一样的视角来叙述和讲解「如何更好的构建和优化多元线性回归模型」。主要将分为两个部分:
优化问题是量化中经常会碰到的,之前写的风险平价/均值方差模型最终都需要解带约束的最优化问题,本文总结用python做最优化的若干函数用法。
当回归模型中两个或两个以上的自变量彼此相关时,则称回归模型中存在多重共线性,也就是说共线性的自变量提供了重复的信息。
本文将讨论多重共线性的相关概念及利用python自动化消除多重共线性的方法,以供参考,欢迎拍砖
逐步回归(Stepwise Regression)是一种逐步选择变量的回归方法,用于确定最佳的预测模型。它通过逐步添加和删除变量来优化模型的预测能力。
回归之所以能预测是因为他通过历史数据,摸透了“套路”,然后通过这个套路来预测未来的结果。
共线性问题指的是输入的自变量之间存在较高的线性相关度。共线性问题会导致回归模型的稳定性和准确性大大降低,另外,过多无关的维度计算也很浪费时间
在介绍如何使用贝叶斯概率公式计算后验概率之前,先回顾一下概率论与数理统计中的条件概率和全概率公式:
线性回归是机器学习中最基础、最常用的算法之一,它用于建立输入特征与连续目标变量之间的关系。本文将深入探讨线性回归的原理、实现方式以及如何使用Python进行线性回归分析。
方差分析(Analysis of variance, ANOVA) :——又称“变异数分析” ①用于两个及两个以上样本均数差别的显著性检验 ②主要研究分类变量作为自变量时,对因变量的影响是否是显著
在之前的文章中,我们已经详细介绍了主成分分析的原理,并用Python基于主成分分析的客户信贷评级进行实战。
1、方差检验是用来比较两个或多个变量数据的样本,以确定它们之间的差异是简单随机的.
针对某个科学问题,通常会在一段时间内对多个同一研究对象进行多次或重复测量,这类数据一般称为纵向数据。纵向数据具有两个特点,一是研究对象重复;二是观察值可能存在缺失值。上述两个因素导致在探索结果和观测指标相关性分析时,一般线性(linear regression model)或广义线性模型(generalized regression model)以及重复测量方差分析(repeated ANOVA)均不适用。因此,广义估计方程(generalized estimating equations,GEE) 和混合线性模型(mixed linear model,MLM) 被广泛应用于纵向数据的统计分析。
我的R语言小白之梯度上升和逐步回归的结合使用 今天是圣诞节,祝你圣诞节快乐啦,虽然我没有过圣诞节的习惯,昨天平安夜,也是看朋友圈才知道,原来是平安夜了,但是我昨晚跟铭仔两个人都不知道是平安夜跑去健身房玩了,给你们看下我两的练了一段时间的肌肉。 好了不显摆了,进入我们今天的主题通常在用sas拟合逻辑回归模型的时候,我们会使用逐步回归,最优得分统计模型的等方法去拟合模型。而在接触机器学习算法用R和python实践之后,我们会了解到梯度上升算法,和梯度下降算法。其实本质上模型在拟合的时候用的就是最大似然估
从零开始学Python【33】--KNN分类回归模型(实战部分) 从零开始学Python【32】--KNN分类回归模型(理论部分) 从零开始学Python【31】—DBSCAN聚类(实战部分) 从零开始学Python【30】--DBSCAN聚类(理论部分)
今天是读《python数据分析基础》的第16天,今天的读书笔记内容为使用statsmodels模块对数据进行最小二乘线性回归。 代码如下(详细内容请见代码备注): 注: 1.数据来源于 https://github.com/cbrownley/foundations-for-analytics-with-python/tree/master/statistics/winequality-both.csv 2.运用statsmodels模块进行最小二乘回归可参考此内容http://www.stats
首先,需要收集与研究问题相关的数据。这些数据应包括一个或多个自变量(特征)和一个因变量(目标)。
首先你运行之后最小化pycharm,看看是不是已经出来了,只是没有自己弹到最顶层。
线性回归是一种简单而强大的统计学方法,用于预测一个因变量与一个或多个自变量之间的关系。在本文中,我们将使用Python来实现一个基本的线性回归模型,并介绍其原理和实现过程。加粗样式
散点图也叫 X-Y 图,它将所有的数据以点的形式展现在直角坐标系上,以显示变量之间的相互影响程度,点的位置由变量的数值决定。
前一篇文章给大家介绍了线性回归的模型假设,损失函数,参数估计,和简单的预测。具体内容请看下面链接:【机器学习笔记】:大话线性回归(一)
1、T检验又称student t检验,主要用于样本含量小(如n-30)、整体标准差σ未知的正态分布。
PLS是交叉分解的第二个重要算法族,在python等语言中也有相应的包实现。一般如果需要在研究多个自变量与因变量的关系话题中,绕不过去的就是多元回归,包括以线性关系为主的多元线性回归和高次多项式为主的响应面分析,众所周知,在多元线性回归中一般可以用最小二乘法计算每个自变量的系数,这一理论比较成熟,其系数矩阵
前几天使用matplotlib 绘图的时候发现无法使用中文字符,所以找了个笔记,顺便分享给大家
数据库:一个存储数据的工具。因为Python是内存计算,难以处理几十G的数据,所以有时数据清洗需在数据库中进行。
通过图像可以直观地学习函数变化,在学习函数等方面效果显著。下面我们尝试用Python的2D绘图库matplotlib来绘制函数图像。实现 y=x*x 图象。
数学上的函数通常形如y = f(x)或者z = g(x, y)这样的形式,在y = f(x)中,f是函数的名字,x是函数的自变量,y是函数的因变量;而在z = g(x, y)中,g是函数名,x和y是函数的自变量,z是函数的因变量。Python中的函数跟这个结构是一致的,每个函数都有自己的名字、自变量和因变量。我们通常把Python中函数的自变量称为函数的参数,而因变量称为函数的返回值。
需求最大的受监督机器学习算法之一是线性回归。线性回归扎根于统计领域,因此必须检查模型的拟合优度。
现在在 AI 的大环境当中,有很多人解除到关于预测模型,而且现在的客户接触到了 AI 这块的内容之后,也不管现在的项目是什么样子的,就开始让我们开发去做关于预测的的相关内容,今天了不起就来带大家看看如何使用 Java 代码来做预测。
传统线性回归模型可通过最小平方方法获取知识并在回归系数存储知识。在此意义下,其为神经网络。实际上,您可以证明线性回归为特定神经网络的特殊个案。但是,线性回归具有严格模型结构和在学习数据之前施加的一组假设。
一般的数学算式math就可以解决了,但是涉及到极限,微积分等知识,math就不行了,程序中无法用符号表示出来。
线性回归是一种简单但功能强大的预测建模技术。它的核心思想是通过拟合一条直线(在二维空间中)或一个超平面(在多维空间中)来最小化预测值与实际值之间的误差。以下是线性回归算法原理的详细解释:
回归分析(regression analysis)是确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的变量的多少,分为一元回归和多元回归分析;按照因变量的多少,可分为简单回归分析和多重回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且自变量之间存在线性相关,则称为多重线性回归分析。
这是一个P的导数,相关与P函数本身的一个微分方程,Autonomous differential equations 自控微分方程 。看上去是不是很复杂,这个时候我们就要呼唤欧拉了 :欧拉方法,命名自它的发明者莱昂哈德·欧拉(),是一种一阶数值方法,用以对给定初值的常微分方程(即初值问题)求解。它是一种解决数值常微分方程的最基本的一类显型方法(Explicit method)。
如果问题是研究和解决某一变量是否影响或者怎么影响其它变量,又或者是研究变量之间的关系以及关系的程度,这样的场景,我们可以使用回归的思维和方法。
在一些问题中,常常希望根据已有数据,确定目标变量(输出,即因变量)与其它变量(输入,即自变量)的关系。当观测到新的输入时,预测它可能的输出值。这种方法叫回归分析(确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法)。
在sklearn的交叉分解模块中有两种典型算法族,一个是本文所述的典型相关分析算法(CCA),一个是偏最小二乘算法(PLS),他们都是具有发现两个多元数据集之间的线性关系的用途,本文先解释典型相关分析。
选择的数据集是NBA2013-2014赛季球员数据,该数据集来自网络并用于其所在文章(详见:https://www.dataquest.io/blog/python-vs-r/)。 笔者心(yi)血(shi)来(ren)潮(xing),在原数据文件基础上略加改动,用R软件在最后增加一列(allstar),该列中仅有1与0值(1代表该球员入选当赛季NBA全明星正赛,0代表该球员未能入选NBA全明星正赛),从而根据球员当赛季数据预测其能否入选全明星,对于像笔者这种喜欢NBA的童鞋是一件非常有意思的事情。输出新的
首先是statsmodels,根据官网介绍,这是python里一个用于estimate statistical models 和 explore statistical data 的模块,经常做数据分析的小伙伴应该都不陌生
回归作为数据分析中非常重要的一种方法,在量化中的应用也很多,从最简单的因子中性化到估计因子收益率,以及整个Barra框架,都是以回归为基础,本文总结各种回归方法以及python实现的代码。
领取专属 10元无门槛券
手把手带您无忧上云