计算不定积分实际上就是根据导函数找原函数。求导的计算方法有一定的套路,对于任给的初等函数都套这些求导法则都可以找到导函数。但是不定积分不然。不定积分的两种运算律——换元积分法和分部积分法——都只是告诉你你可以怎么算,但是并没说这么算一定能算出来。因此,不定积分的计算有十分强的技巧性。
上回我们针对这道北大强基题[((1 + sqrt(5)) / 2) ^ 12]在答案的基础上给出了出题的可能思路,想一探究竟,相关内容请戳:
上周的一篇《字符串比较,居然暗藏玄机》,我最早是在唐磊《这10行比较字符串相等的代码给我整懵了》里看到的,我用通俗的语言,展开了“密码破解”案例。文末却没有提引用的出处,这里和唐磊道个歉。
遍历所有的连续数字区间 (i, j) ,然后求和看等不等于 N 。这种方法时间复杂度是 ,显然不可行。
令人称奇的简单证明:五种方法证明根号2是无理数 我喜欢各种各样的证明。人们很难想到这样一些完全找不到突破口的东西竟然能够证明得到。说“没有突破口”还不够确切。准确地说,有些命题多数人认为“怎么可能能够证明”却用了一些技巧使得证明变得非常简单。我看了五色定理的证明,定理宣称若要对地图进行染色使得相邻区域不同色,五种颜色就够了。没看证明之前,我一直在想这个玩意儿可以怎么来证明。直到看了证明过程后才感叹居然如此简单,并且立即意识到四色定理基本上也是这种证明方法。还有,像“一个单位正方形里不可能包含两个互不
现在的互联网行业就是裁员消息漫天飞,尤其是疫情之下,太难了。今天分享一个学弟的暑期实习面试历程,他是从本科生物跨专业考研到计算机,面了N家公司,也如愿拿到了一些offer。以下是原文~
如何使用导数去估算特定的量. 例如, 假设想不借助计算器就得到 的一个较好估算. 我们知道 比 略大, 所以显然可以说 大约 比 3 多一点. 这没问题, 但其实可以不费太多劲就做出一个好得多的估算. 下面是具体做法.
众所周知,科学计算包括数值计算和符号计算两种计算。在数值计算中,计算机处理的对象和得到的结果都是数值,而在符号计算中,计算机处理的数据和得到的结果都是符号。这种符号可以是字母、公式,也可以是数值,但它与纯数值计算在处理方法、处理范围、处理特点等方面有较大的区别。可以说,数值计算是近似计算;而符号计算则是绝对精确的计算。它不容许有舍入误差,从算法上讲,它是数学,它比数值计算用到的数学知识更深更广。最流行的通用符号计算软件有:MAPLE,Mathematica,Matlab,Python sympy等等。
以上就是python Axes3D绘制3D图形的方法,希望对大家有所帮助。更多Python学习指路:python基础教程
最后还是回到了高中刷题时光,没有撤退可言,码民报名费300交了,争取大一就去北京玩几天,开创蓝桥杯真题系列,随缘更新
如果是复合对象,Python会检查其所有部分,包括自动遍历各级嵌套对象,直到可以得出最终结果
# encoding: utf-8 """ Create on: 2018-08-24 上午1:32 author: sato mail: ysudqfs@163.com life is short, you need python """ # def insert_sort(array): # # 从第二个开始循环 # for i in range(1, len(array)): # # 认为他是最小的 # min = array[i] #
“积算”、“太乙”、“两仪”、“三才”、“五行”、“八卦”、“九宫”、“运筹”、“了知”、“成数”、“把头”、“龟算”、“珠算”、“计数”,共计14中算法。这里我们主要说珠算,因为前12种难度系数太高,没个几万字的文章不太好理解。仅仅九宫八卦就够学一辈子的了。太乙、两仪这些现在还没有真正意义上的理解成功。所以只能说说咱们可以理解的,但仅仅是这个末尾的算法就已经领跑了全人类。这就是咱们华夏人的只会,我相信,只要和平发展,不需要多少年,在咱们国人的共同努力下,祖国的光辉会照耀全世界每一片土地,全世界都会讲【中国话】,全世界都会用【中国式编程】。
每当有人发布关于 python 处理 Excel 数据的文章,总会有人只看了标题就评论:
假如我们要求z对x1的偏导数,那么势必得先求z对t1的偏导数,这就是链式法则,一环扣一环
在人工智能算法大数据时代,会有各种各样的预测模型,那怎么来评判一个预测模型的准确度呢?这一篇就来聊聊常用的一些评价指标。
根据输入文章,撰写摘要总结。
前言 统计所有小于非负整数 n 的质数的数量 这是一道leetcode简单级别的, 本来没啥说的, 然后我发现了欧拉筛选法. 常规方法 常规思路就是对每个数x进行检测, 用x除以2到根号x, 有一个可以整除, 就不是素数. 优点是连数组或者vector都不需要, 有一个算一个, 很节省空间. bool isPrime(int i) { for (int j = 2; j * j <= i; ++j) { if (i % j == 0)return false;
Python条件语句是通过一条或多条语句的执行结果(True或者False)来决定执行的代码块。
写在前边:这些梗都是敝人自己做题和比赛时曾经坑过自己的地方,特别在这里记录一下,所有的链接都是本博客中的题解链接(有大致题意说明和代码),原题请到OJ上自行寻找。目的是提升自身姿势。欢迎大佬们给我提出更好的建议,十分感谢。
在前面的系列文章《我的数学学习回忆录——一个数学爱好者的反思(二)》中,我从宏观层面回忆了我的数学学习历程和反思。其实,我和数学之间还有很多很多意识流一样的交流和故事,它会时不时在我的生活中可爱地蹦跶出来。有时源于突然记起的公式,有时源于工作生活中联想回去的特定场景。它代表着我那时候的记忆定格以及以我今天的思维碰撞后的结果,有时能擦出令人惊喜的思维火花。
除了np.mean函数,还有np.average函数也可以用来计算mean,不一样的地方时,np.average函数可以带一个weights参数:
当我冒出这个想法的时候,其实大部分人的反映都一样1+1开根号就是啊,至于为什么,就是规定呗,当然把根号作为一种符号确实如此,但是离结果还差了很远。
我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢?
Sometimes, the easiest thing to do is to just find the distance between two objects. We just need to find some distance metric, compute the pairwise distances, and compare the outcomes to what's expected.
若一个正整数有偶数个不同的真因子,则称该数为幸运数。如4含有2个真因子为 1 和 2 。故4是幸运数。求【2,100】之间的全部幸运数之和。
好吧,我承认我标题党了,不过既然你来了,就认真看下去吧,保证你有收获。 我们平时经常会有一些数据运算的操作,需要调用sqrt,exp,abs等函数,那么时候你有没有想过:这个些函数系统是如何实现的?就拿最常用的sqrt函数来说吧,系统怎么来实现这个经常调用的函数呢? 虽然有可能你平时没有想过这个问题,不过正所谓是“临阵磨枪,不快也光”,你“眉头一皱,计上心来”,这个不是太简单了嘛,用二分的方法,在一个区间中,每次拿中间数的平方来试验,如果大了,就再试左区间的中间数;如果小了,就再拿右区间的中间数来试。比如
python100天还在继续,到第三周的时候就显得有点难啃了,笔记中很难进行很好的转述,因此就对原有的python3笔记进行补充。今天的推送主要解决不同方式下的柱形图可视化,当然主要要使用python。R真香。
sqrt()函数,是绝大部分语言支持的常用函数,它实现的是开方运算;开方运算最早是在我国魏晋时数学家刘徽所著的《九章算术》被提及。今天写了几个函数加上国外大神的几个神级程序带大家领略sqrt的神奇之处。
此题主要是熟知通过星号作为函数参数的功能,可以代表任意多个参数出入。传入后这个参数的类型其实是元素tuple。如下代码是“刘金玉编程”的案例。
可以看出,在计算X2加进去吐出来的值的时候必须要先把X1得出的参数值与X2放在一起才行。换句话说,RNN的计算是必须一个接一个,并不存在并行运算。如果不能并行运算,那么时间和计算成本均会增加。
这是YOLO系列的第一篇,文章发表在CVPR2016上,论文链接:YOLOV1. 摘要指出了文章的主要创新之处:把分类问题转换为回归问题,使用一个卷积神经网络就可以直接预测物体的bounding box和类别概率。 算法的优点有很多:
本文所述为量子化学电子结构理论中的基础知识,为本公众号同期另一文《从密度矩阵产生自然轨道_理论篇》一文的补充,对此基础内容熟悉的读者可以直接略过。
周末闲来无事,看到隔壁家的老王在和隔壁家的媳妇玩24点,就进屋看了看。发现老王是真不行啊,那不行,这也不行。
cj58-5b2390d9effc49569e0ca870cb4dff57.png
举个例子 假设需要我们写一个简单的计算器,能实现加减乘除运算,仅要求输入两个数,选择运算符,计算出结果就行了。 使用简单工厂模式的设计如下: 工厂类提供了一个getBean函数,该函数会根据客户端输入
很多人在使用pytorch的时候都会遇到优化器选择的问题,今天就给大家介绍对比一下pytorch中常用的四种优化器。SGD、Momentum、RMSProp、Adam。
你好,我是zhenguo 这是我的第507篇原创 前几天有朋友问我,面试遇到一道题目,看似简单,但是最后没有写好。 这道题目描述简单,就是使用二分法对非负数开根号,并返回。 中午我实现了一版,截止目前测试没有发现问题。 基本实现思路是这样: 先初步确定开根号所在的一个大概区间[a,b] 然后使用二分法,逐次迭代 详细实现 下面我详细介绍下上面两个步骤。 第一步,初步确定开根号所在的一个大概区间[a,b] 其中,a,b都是整数,找到i**2大于fc的i,然后break,这样可以确定所得根号值一定位于:[i-1
这个题,用暴力法肯定会超时,优化一点的暴力法还是会超时。一般来说,寻找质数主要是两种方法,埃式筛和欧拉筛。
埃拉托斯特尼筛法 ,简称 埃氏筛 或 爱氏筛 ,是一种由希腊数学家 埃拉托斯特尼 所提出的一种简单 检定素数 的算法。要得到自然数n以内的全部素数,必须把不大于根号n的所有素数的倍数剔除,剩下的就是素数。
承自上一篇中的函数图形,有人问,能不能别把画个图搞那么复杂,我说当然,只要你有一台mac。 话说出来很潇洒的样子,充斥着一股迷之自信。 可能这就是mac用户典型的特征,尽管也许并没有那么值得骄傲。 其实在上一篇中我见到照片的时候就看出来用的是什么软件了,mac内置的grapher。grapher的诞生还有一段荡气回肠的“硅谷往事”,是一个令我汗颜而又激励我努力的故事。故事英文原文请看:http://www.PacificT.com/Story/,中文译文的网址打不开了,这里有个转载:https:
numpy 早就用过了,但是长时间不用的话对其中的一些知识点又会忘记,又要去网上翻看各种博客,干脆自己把常用的一些东西记下来好了,以后忘了的话直接看自己写的笔记就行了
深层神经网络参数调优(二)——dropout、题都消失与梯度检验 (原创内容,转载请注明来源,谢谢) 一、dropout正则化 中文是随机失活正则化,这个是一种正则化的方式,之前学过L1、L2正则化,这个则是另一种思想的正则化。dropout,主要是通过随机减少一些神经元,来实现减少w和b,实现防止过拟合的。 1、主要做法 假设一个概率阈值p,对于神经网络中的所有神经元,在每一次FP、BP的时候,都有p的概率会被保留下来。没有被保留下来的神经元,则不参与本次的运算,即不接收输入,也不输出结果。 2、具体
双指针是一种方法,一种思想一种技巧,也谈不上什么特别的算法,在二分查找中经常使用这个技巧,具体就是用两个变量动态的存储两个或者多个的结点,来方便我们进行一些操作,通常使用在线性结构中,比如说数组或者是链表。 在我们遇到像数组,链表这类数据结构的算法题目的时候,应该要想得到双指针的来解决问题。特别是链表类的题目,经常需要用到两个或多个指针配合来记忆链表上的节点,完成某些操作。链表这种数据结构也是树形结构和图的原型,所以有时候在关于图和树形结构的算法题目中也会用到双指针。
记得原来和朋友猜测过网易云的推荐是怎么实现的,大概的猜测有两种:一种是看你听过的和收藏过的音乐,再看和你一样听过这些音乐的人他们喜欢听什么音乐,把他喜欢的你没听过的音乐推荐给你;另一种是看他听过的音乐或者收藏的音乐中大部分是什么类型,然后把那个类型的音乐推荐给他。当然这些都只是随便猜测。但是能发现一个问题,第二种想法很依赖于推荐的东西本身的属性,比如一个音乐要打几个类型的标签,属性的粒度会对推荐的准确性产生较大影响。今天看了协同过滤后发现其实整个算法大概和第一种的思想差不多,它最大的特点就是忽略了推荐的东西
回到正题,这个肯定不是想问你应该调用哪个函数,而是想问如何自己去实现一个这样的开方函数。
有个裙友要看看用 lambda 能不能在一行里定义出来 fib 函数,并且不要那个根号五的数学公式,于是就有了这篇文章。
领取专属 10元无门槛券
手把手带您无忧上云