逐步回归(Stepwise Regression)是一种逐步选择变量的回归方法,用于确定最佳的预测模型。它通过逐步添加和删除变量来优化模型的预测能力。
经常听别人说 Python 在数据领域有多厉害,结果学了很长时间,连数据处理都麻烦得要死。后来才发现,原来不是 Python 数据处理厉害,而是他有数据分析神器—— pandas 。
数据科学主要以统计学、机器学习、数据可视化等,使用工具将原始数据转换为认识和知识(可视化或者模型),主要研究内容包括数据导入、数据转换、可视化、构建模型等。当前R语言和Python是两门最重要的数据科学工具,本系列主要介绍R和Python在数据导入、数据转换、可视化以及模型构建上的使用。整个系列会按照数据转换、可视化、数据导入、模型构建进行介绍。在数据转换和可视化模块中,R和Python有很多相近的语法代码。
文章背景: 最近在学习廖雪峰老师的Python文章,其中有个章节讲到的是filter()函数,该函数用于过滤序列。在学习过程中,也顺带巩固了其它的知识点,在此进行相应的整理。
由于Python的良好生态,很多时候我们的程序只是通过调用别人写好的方法即可实现功能。
要想遍历一串连续的数字,可以使用 for 变量 in range(): 的方式,在range()的括号中设置遍历的起始值和结束值。 【注意】 结束值是取不到的哦!
航班延误是航空公司、旅客和机场管理方面都面临的一个重要问题。航班延误不仅会给旅客带来不便,还会对航空公司和机场的运营产生负面影响。因此,对航班延误的影响因素进行预测分析,对于航空公司、旅客和机场管理方面都具有重要意义。
python的pandas库可以轻松的处理excel中比较难实现的筛选功能,以下简单的介绍几种利用pandas实现筛选功能方式:
Python 是一个简单易上手可读性强且功能强大的编程语言,它有一些独特的技巧和写法,可以在不影响可读性的情况下大大缩短我们的 Python 代码,让它看起来更加紧凑和高级。
在Pandas中,query是一个功能强大的方法,允许使用类似SQL的表达式来筛选DataFrame。
当我们拿到数据集的时候,我们应该做些什么呢?在数据的汪洋大海中,你是否体会到了同在北上广奋斗的人们一样的在午夜的孤寂感?在充实着林林总总的数据表格中,你试图从中发现规律,可是否感受到了像心上人在身边却无法说出口的那层窗户纸。
据说Python之父-Guido Van Rossum打算让CPython更快,速度直接翻五倍,这是实实在在的好消息。
本文介绍基于C++语言,遍历文件夹中的全部文件,并从中获取指定类型的文件的方法。
数据归约是在保证数据信息量的基础上,尽可能精简数据量。筛选和降维是数据归约的重要手段,尤其在数据量大且维度高的情况下,可以有效地节约存储空间和计算时间。反之,当数据量不多,或者现有存储和计算资源能满足分析和预测时不一定需要降维,因为任何的归约都会造成数据损失。
今天这篇跟大家分享我的R VS Pyhton学习笔记系列5——数据索引与切片。 我之前分享过的所有学习笔记都不是从完全零基础开始的,因为没有包含任何的数据结构与变量类型等知识点。 因为一直觉得一门编程语言的对象解释,特别是数据结构与变量类型,作为语言的核心底层概念,看似简单,实则贯穿着整门语言的核心思想精髓,所以一直不敢随便乱讲,害怕误人子弟。还是建议每一个初学者(无论是R语言还是Python,都应该用一门权威的入门书好好学习其中最为基础的数据结构、变量类型以及基础语法函数)。 今天我要分享的内容涉及到R语
列表推导式是Python基础,好用,而又非常重要的功能,也是最受欢迎的Python特性之一。本质上可以把列表推导式理解成一种集合了变换和筛选功能的函数,通过这个函数把一个列表转换成另一个列表的过程
AIC即赤池值,是衡量模型拟合优良性和模型复杂性的一种标准,在建立多元线性回归模型时,变量过多,且有不显著的变量时,可以使用AIC准则结合逐步回归进行变量筛选。AICD数学表达式如下: A I C = 2 p + n ( l o g ( S S E / n ) ) AIC=2p+n(log(SSE/n)) AIC=2p+n(log(SSE/n)) 其中, p p p是进入模型当中的自变量个数, n n n为样本量, S S E SSE SSE是残差平方和,在 n n n固定的情况下, p p p越小, A I C AIC AIC越小, S S E SSE SSE越小, A I C AIC AIC越小,而 p p p越小代表着模型越简洁, S S E SSE SSE越小代表着模型越精准,即拟合度越好,综上所诉, A I C AIC AIC越小,即模型就越简洁和精准。
在我们日常上网浏览网页的时候,经常会看到一些好看的图片,我们就希望把这些图片保存下载,或者用户用来做桌面壁纸,或者用来做设计的素材。
【导语】程序员每日都在和 debug 相伴。新手程序员需要学习的 debug 手段复杂多样,设置断点、查看变量值……一些网站还专门针对debug撰写了新手教程。老司机们在大型的项目中要 debug 的问题不一样,模块众多、代码超长,面对大型项目的debug之路道阻且长。针对新手和老手程序员会遇到的不同debug问题,本文推荐了两个GitHub上的开源debug工具:PySnooper 和 Behold,帮助大家更加优雅、简洁地 debug 代码。
本文中介绍 Python 中 5 个高阶内置函数,它们不仅能够帮助我们了解 Python 的数据结构,同时也能加快数据处理的速度,体会到 Python 的强大。
在评分卡模型的构建过程中,变量选择是一个关键的步骤,而var_filter函数则是用于进行变量筛选的工具。
一般的认为函数是有返回值的,而过程是没有返回值的因为过程简单且特殊,简单来讲函数是干完活,然后跟领导报告一下,而过程却是完事后啪啪屁股走人的“小混蛋”
我喜欢用 python 做一些临时性数据工作,简单情况下,直接一把梭写到底。比如简单的多文件合并数据:
👆点击“博文视点Broadview”,获取更多书讯 数据分析流可以视作数据分析师的实践指南,也可以是模型关系管理的建设方案。 下面将按照12 个步骤来简要阐述数据分析流中的注意事项,将体系化的建模思路和非系统化的经验指导融为一体,从而多维度描述数据分析流和建模过程。 01 数据源 对于初级分析师而言,数据源的重要性远不及中高级分析师,大多数场景面对的数据源都来自SQL 抽取和问卷,以简单的结构化数据为主;对于中高级的分析师而言,需要掌握批次数据、流数据甚至是分布式的高性能处理,还需要掌握如何协同发挥
函数的初识 写一个获取字符串总个数的代码,不能用len(): s1 = 'fjkdsfjdssudafurpojurojregreuptotuproq[t' count = 0 for i in s1: count += 1 print(count) 写一个获取列表总个数的代码: l1 = [1, 2, 3, 4, 5, 6] count = 0 for i in l1: count += 1 print(count) 这样的写代码的缺点: 重复代码太多。 代码的可
对于后台开发工程师而言,不管你是什么语言的工程师。对于统计线上数据,从日志提炼信息等等场景,awk都是必备神器!
今天我们来讲解一个比较简单的案例,使用openpyxl从Excel中提取指定的数据并生成新的文件,之后进一步批量自动化实现这个功能,通过本例可以学到的知识点:
本篇更新策略篇的规则集性能测算及Python实操,内容选自《100天风控专家》第57期。
作者:贾胜杰,硕士,退役军人,电气工程专业,现成功转行K12领域数据挖掘工程师,不仅在数据清理、分析和预测方向,而且在自制力和高效学习方面都有丰富经验。 编辑:王老湿
决定写这篇文章的初衷是来源于一位小伙伴的问题,关于"如何根据数据源用 Python 自动生成透视表",这个问题背后有个非常好的解决思路,让代码替我们做重复的工作,从而减轻工作量,减少出错。
日常用Python做数据分析最常用到的就是查询筛选了,按各种条件、各种维度以及组合挑出我们想要的数据,以方便我们分析挖掘。
作者:MTbaby 来源:http://blog.csdn.net/mtbaby/article/details/70209729 描述:用Python爬去百度贴吧图片并保存到本地。 本人刚学爬虫还不是很熟练,其中难点在于正则表达式的理解; 说明 01 获取整个页面数据 Urllib 模块提供了读取web页面数据的接口,我们可以像读取本地文件一样读取www和ftp上的数据。首先,我们定义了一个getHtml()函数: urllib.urlopen()方法用于打开一个URL地址。
我是R语言的忠实粉丝,并且靠它吃饭。特别提一下Tidyverse,它是一个功能强大、简洁易懂且文档齐全的数据科学平台。我在此向每一位初学者强烈推荐免费的在线电子书R for Data Science。
本文是【统计师的Python日记】第8天的日记 回顾一下: 第1天学习了Python的基本页面、操作,以及几种主要的容器类型。 第2天学习了python的函数、循环和条件、类。 第3天了解了Numpy这个工具库。 第4、5两天掌握了Pandas这个库的基本用法。 第6天学习了数据的合并堆叠。 第7天开始学习数据清洗,着手学会了重复值删除、异常值处理、替换、创建哑变量等技能。 原文复习(点击查看): 第1天:谁来给我讲讲Python? 第2天:再接着介绍一下Python呗 【第3天:Numpy你好】 【第
每一个logger对象,都有一个日志级别,它只会输出高于它level的日志。如果一个logger的level是INFO,那么调用logger.debug()是无法输出日志的,而logger.warning()能够输出。 一般来说,以上的6个日志级别完全满足我们日常使用了。
Python文档整理目录: https://blog.csdn.net/humanking7/article/details/80757533
Pandas这个库对Python来说太重要啦!因为它的出现,让Python进行数据分析如虎添翼,作为Python里面最最牛逼的库之一,它在数据处理和数据分析方面,拥有极大的优势,受到数据科学开发者的广大欢迎。
本文介绍基于Python语言,统计文件夹中文件数量;若其含有子文件夹,还将对各子文件夹中的文件数量一并进行统计的方法。
只有把一个语言中的常用函数了如指掌了,才能在处理问题的过程中得心应手,快速地找到最优方案。
列表推导式(List Comprehensions)是Python中一种简洁、高效的创建列表的方法。它允许你用一行代码代替多行循环结构来生成新的列表。列表推导式的语法结构紧凑,易于阅读,适用于基于现有列表或者其他可迭代对象生成新列表的场景,特别是当新列表的每个元素都是通过对原列表元素进行某种变换或过滤得到时。
根据已有的车祸数据信息,计算严重车祸发生率最高和最低的地区;并对车祸发生严重程度进行因素分析,判断哪些外界环境变量会影响车祸严重程度,分别有怎样的影响。
主题 数据建模 我还是一次性将一些理论的知识整理完呗,大家可以选择性地看看就好,后续会找一些实例来练练。 一、分类与预测 分类与预测是预测问题的2种主要实现类型。分类指的是预测分类情况(离散属性),而预测则是建立连续值函数模型,预测给定自变量对应的因变量的值。 1. 常用预测与分类算法 1)回归分析 确定预测属性(数值型)与其他变量间相互依赖的定量关系最常用的统计学方法,包括线性回归、非线性回归、logistic回归、岭回归、主成分回归、偏最小二乘回归。 2)决策树 决策树采用自顶而下的递归方式,
for循环可以把字符串里面的元素都依次取出来,自动赋值给变量i然后再执行循环体内的代码块
领取专属 10元无门槛券
手把手带您无忧上云