在数据挖掘比赛中,很重要的一个技巧就是要确定训练集与测试集特征是否同分布,这也是机器学习的一个很重要的假设。但很多时候我们知道这个道理,却很难有方法来保证数据同分布,这篇文章就分享一下我所了解的同分布检验方法。
R语言内置强大的向量运算,是搞数据分析的强大的编程语言,而Python也毫不逊色。今天就试着分析一下考试成绩表中两门科目的相关性。 问题描述: 有一个CSV文件,包含着600名学生在一次考试后的几门课程的考试成绩,想分析一下数学和物理成绩的相关关系。CSV数据样例: num,class,chinese,math,english,physical,chemical,politics,biology,history,geo,pe 158,3,99,120,114,70,49.5,50,49,48.5,49.5,
Seaborn 是基于 matplotlib 开发的高阶 Python 数据可视图库,用于绘制优雅、美观的统计图形。
教程地址:http://www.showmeai.tech/tutorials/33
向AI转型的程序员都关注了这个号 大数据挖掘DT数据分析 公众号: datadw 我们在对数据进行预处理时,常常需要对数据做一些可视化的工作,以便能更清晰的认识数据内部的规律。 这里我们以kaggle案例泰坦尼克问题的数据做一些常用的可视化的工作。首先看下这个数据集: 我们换一个连续性变量多的数据集,看看特征直接相关度。 下面我们看看高维数据如何做可视化分析,首先咱们造个高维数据集 数据的可视化有很多工具包可以用,比如下面我们用来做数据可视化的工具包Seab
data1为段子信息,data2为用户信息,二个表都有用户url,我们可以将其merge。
无论你是在与高管开会,还是在与数据狂人开会,有一件事是可以肯定的:总会看到一个直方图。
微信作为一款拥有将近9亿用户的超级APP,已经成为很多人生活中不可或缺的一部分,聊天、分享动态、阅读资讯、购物支付……微信就像一张移动互联网的身份证,拥有它就能在移动互联的世界行止由心。本文作者利用 Python 爬取了自己微信好友的信息后,像打开了一扇新世界的大门。一起来围观他的爬取过程吧。 昨晚偶然了解到 Python 里的 itchat 包,它已经完成了 wechat 的个人账号 API 接口,使爬取个人微信信息更加方便。鉴于自己很早之前就想知道诸如自己微信好友性别比例都来自哪个城市之类的问题,于是乎
微信作为一款拥有将近9亿用户的超级APP,已经成为很多人生活中不可或缺的一部分,聊天、分享动态、阅读资讯、购物支付……微信就像一张移动互联网的身份证,拥有它就能在移动互联的世界行止由心。本文作者利用 Python 爬取了自己微信好友的信息后,像打开了一扇新世界的大门。一起来围观他的爬取过程吧。
微信作为一款拥有将近9亿用户的超级APP,已经成为很多人生活中不可或缺的一部分,聊天、分享动态、阅读资讯、购物支付……微信就像一张移动互联网的身份证,拥有它就能在移动互联的世界行止由心。本文作者利用
在我行走江湖的行囊中,有两件利器,tableau与matplotlib,它们足以让我应对各种数据可视化的较量。tableau,乃是BI领域的名门正派,其可视化之术,与PowerBI不相上下。matplotlib,则是Python江湖中的一位侠客,以编程之力,绘制图表,既精妙又实用。
折线走势图是所有文章必不可少的数据分析直观展现方式,本文以上图为例,以小见大来说明如何用Matlab画出SCI投稿专用单栏图片:线形、标记点、线宽、坐标、图例、字体、画幅、600dpi高清。
粒子群算法( Particle Swarm Optimization, PSO)最早是由Eberhart和Kennedy于1995年提出,它的基本概念源于对鸟群觅食行为的研究。鸟群中有个体和群体,个体和群体的信息是可以互通的。个体在随机搜寻食物的过程中,只要跟踪离食物最近的群体,就能最有效地找到食物。
最近几天干啥都不来劲,昨晚偶然了解到 Python 里的 itchat 包,它已经完成了 wechat 的个人账号 API 接口,使爬取个人微信信息更加方便。鉴于自己很早之前就想知道诸如自己微信好友性
安装完成后导入包,再登陆自己的微信。过程中会生产一个登陆二维码,扫码之后即可登陆。登陆成功后,把自己好友的相关信息爬下来。
大数据文摘作品,欢迎后台授权转载 选文:裴迅 编译/校对:裴迅 郭姝妤 现如今,ggplot特别火,这是因为:它是一个特别容易上手的R制图功能包。尽管如此,有时候我还是想用一些比ggplot更简洁的方法。这时候,我会选择用R里基本的绘图功能。基本款的图没有那么精致而且编程起来也有点奇怪,但是用基本绘图功能画图特别快,而且适用于各种类型的数据,很多专业人士都会经常用。这样看来,其实跟UNIX工具包比较像,比如,grep, sed, 和 awk. 来,放松一下,我们要开始玩转R的基本绘图功能了! 数据源
数据可视化的文章我很久之前就打算写了,因为最近用Python做项目比较多,于是就花时间读了seaborn的文档,写下了这篇。 数据可视化在数据挖掘中是一个很重要的部分,将数据用图表形式展示可以很直观地看到数据集的特点(比如正态分布,长尾分布,聚集等),方便下一步怎么对数据进行处理。
VOSviewer一直都是学术界文献可视化的神器,不过貌似很少看有人来DIY,随意画东西。 那笔者花了点时间测试了一下,发现【VOSviewer Online + networkX/python】可以极快的画出好看的网络关系图。
如何将数据组织成某些可理解的形式,使得他可以比较容易地发现数据的趋势,并与其他人交流,这就是描述性统计的任务:简化结构并整理组织数据。整理一组数据的最常用过程是将数据放入一个频数分布。
在网络理论 的研究中,复杂网络是由数量巨大的节点 和节点之间错综复杂的关系共同构成的网络 结构。用数学的语言来说,就是一个有着足够复杂的拓扑 结构特征的图 。复杂网络具有简单网络,如晶格网络 、随机图 等结构所不具备的特性,而这些特性往往出现在真实世界的网络结构中。复杂网络的研究是现今科学研究中的一个热点,与现实中各类高复杂性系统,如的互联网 、神经网络 和社会网络 的研究有密切关系。
1. 权重的初始化 1.1 fine-tuning 神经网络的训练的有两种方式,第一种是自己从头到尾训练一遍;第二种是使用别人训练好的模型,然后根据自己的实际需求做改动与调整。后者我们叫做fine-tuning. 在model zoo有大量训练好的模型(不知道的可以百度一下model zoo) fine-tuning相当于站在巨人的肩膀上,使用别人已经训练好了的优秀的模型去实现自己的需求。一般分为以下两种调整方式: 1.只修改FC(全连接层),比如原来的模型是1000个类别,而你实际上只需要分2个类别,那
公众号断更好几天了,期末了难免有点忙,在这跟大家说一声抱歉。上次对租金预测比赛进行的是数据分析部分的处理机器学习实战--住房月租金预测(1),今天继续分享这次比赛的收获。本文会讲解对特征工程的处理。话不多说,我们开始吧!
此前我们做过相关的教程,就是利用Python调用百度地图的API接口获取相关的地图信息。比如爬取某个范围内特定的兴趣点的坐标,对两点之间进行路径规划计算行车时间等。相关的链接可以戳以下的传送门:
版本:python3.7 数据:wrfout模拟数据 核心代码:metpy.calc.vorticity
PEPATAC是基于python开发的一个ATAC数据分析的pipeline, 网址如下
由于数据可视化的重要性,在数据科学的生态系统中有许多数据可视化库和框架。其中一个流行的是Seaborn,这是一个用于Python的统计数据可视化库。
Apache Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。
对Pipenv这个虚拟环境管理工具不熟悉的可以去看我之前的文章: 《Python 管理哪家强?》,里面对于 Pipenv 这个虚拟环境管理工具有一些介绍。
那么在京的小伙伴,估计都想查询一下这些途经点距离自己有多远?自己的行程卡会不会出现星号?今天我就分享一下自己是如何用数据查询的吧!
说到使用Python来进行地图的可视化那就一定少不了Pyecharts的身影,本文小编就对Pyecharts可实现的地图可视化进行一番探究,看看其出来的效果如何
12 月 20 日,央行授权全国银行间同业拆借中心公布,最新一期的贷款市场报价利率(LPR)为:1 年期 LPR 为 3.8%,较上一期下调 5 个 BP,5 年期以上 LPR 为 4.65%,同上期保持一致。
临近毕业,慢慢的也感伤起来,回想大学这几年,除了技术的成长,最值得庆幸的就是结交了一帮志同道合的好友。后期自己做了公众号,微信好友的数量也越来越多,身边人所扮演的角色也越来越丰富,有早已结婚生子为人父母的同学,有沉迷科研学术的教师,当然也少不了一众还在996的程序猿。事实上,你所处圈子的质量很大程度上就决定了你的人生质量,那么今天我们就来看看当 Python 遇到了你的微信好友后能擦出怎样的火花。
https://github.com/ChenZixinn/scenery_spider_web
本文主要介绍了TensorBoard的基本用法、可视化技巧、如何记录训练过程中的各种指标以及自定义训练过程的图形绘制。通过使用TensorBoard,开发者可以更方便地理解训练过程中的模型表现,从而更好地优化模型。
Tensorboard是TensorFlow自带的一个强大的可视化工具 01 功 能 这是TensorFlow在MNIST实验数据上得到Tensorboard结果(https://www.tensorflow.org/tensorboard/index.html#graphs) Event: 展示训练过程中的统计数据(最值,均值等)变化情况 Image: 展示训练过程中记录的图像 Audio: 展示训练过程中记录的音频 Histogram: 展示训练过程中记录的数据的分布图 02 原 理 在运行过程中,记
联合分布(Joint Distribution)图是一种查看两个或两个以上变量之间两两相互关系的可视化形式,在数据分析中经常需要用到。一幅好看的联合分布图可以使得我们的数据分析更加具有可视性,让大家眼前一亮。
在机器学习的世界中,以概率分布为核心的研究大都聚焦于正态分布。本文将阐述正态分布的概率,并解释它的应用为何如此的广泛,尤其是在数据科学和机器学习领域,它几乎无处不在。
本文继续接上篇文章,【技术分析】4kw机柜无通道封闭CFD模拟分析及优化(上篇) 进行解析。
对于一组数据是否符合某个分布,有很多种统计检验的方法,比如K-S检验,卡方检验,从图形上我们可以用Q-Q图和P-P图来检查数据是否服从某种分布。他们可以检验的分布图包括:β分布,t分布、卡方分布、伽马分布、正态分布、均匀分布等等。
当你知道某些详细地址信息,该如何利用。本文通过调用百度地图接口,实现用户可视化展示,便于更清楚地了解用户。 注册百度地图开放平台帐号 首先先到http://developer.baidu.com/ma
前一章节中介绍的线性回归是一种监督学习算法,我们使用数据与输出值(标签)来建立模型拟合它们。但是我们并不总是有已经打标签的数据,却仍然想去分析它们。这种情况下,我们可以使用无监督的算法如聚类。因为聚类算法是一种很好的方法来对数据进行初步分析,所以它被广泛使用。 本章中,会讲解K-means聚类算法。该算法广泛用来自动将数据分类到相关子集合中,每个子集合中的元素都要比其它集合中的元素更相似。此算法中,我们没有任何目标或结果来预测评估。 本章中依然会介绍TensorFlow的使用,并介绍基础数据结构tensor
统计分析就是去理解一个数据集中变量之间的关系,以及这些关系如何受到其他变量的影响。Seaborn 的主要用处就是可视化这个过程。当数据以恰当的方式展示出来时,读者可以直观地观察到某些趋势并发现变量之间的关系。
作者:夏尔康 https://ask.hellobi.com/blog/xiaerkang/4129 在R语言中,对数据进行回归建模是一件很简单的事情,一个lm()函数就可以对数据进行建模了,但是建模了之后大部分人很可能忽略了一件事情就是,对回归模型进行诊断,判断这个模型到低是否模型的假定;如果不符合假定,模型得到的结果和现实中会有巨大的差距,甚至一些参数的检验因此失效。 因为在对回归模型建模的时候我们使用了最小二乘法对模型参数的估计,什么是最小二乘法,通俗易懂的来说就是使得估计的因变量和样本的离差
在前几天对数据分析师与算法工程师进行岗位对比分析的文章中,我们使用了密度分布图和箱线图对薪资水平与学历对薪资的影响进行了分析,那么早起就对这两种图形的绘制方法进行解析,也借着这个机会讲一下我最喜欢的绘图包:ggplot2
数据分布是指数据集中所有可能值出现的频率,并用概率来表示。它描述了数据取值的可能性。
Python 现在是越来越火了。 IEEE 发布的 2017 年编程语言排行榜,Python 排第一。 百度指数的搜索趋势,Python稳步上升。 (此趋势图上有个小亮点:那些搜索量骤减的极低值,猜猜
领取专属 10元无门槛券
手把手带您无忧上云