原文链接:https://www.cnblogs.com/fydeblog/p/7159775.html
上一篇文章机器学习算法复习手册——决策树在复习完基本概念之后,我给自己挖了一个坑:用python写一个决策树出来(注意,不是sklearn调包)。虽然说这个东西在几年前我写过一次,但又写一次,发现很多地方还有挺折磨我的。今天,就来填这个坑,分享一下我写的很垃圾的ID3决策树算法。
http://www.cnblogs.com/fydeblog/p/7159775.html
选自HEARTBEAT 作者:Ishan Sharma 机器之心编译 基于树的学习算法在数据科学竞赛中相当常见。这些算法给预测模型赋予了准确性、稳定性以及易解释性。其中,决策树算法也是引人关注的「随机
r与python差异比较大的一个地方就是,python的机器学习算法集中程度比较高,比如sklearn,就集成了很多的算法,而R语言更多时候需要一个包一个包去了解,比较费时费力,对于python转过来的朋友非常不友好,抽空整理了工作中常用的R包如下:
如果要画出决策树图,一般需要该库,需要先下载: http://www.graphviz.org/download/
关键字全网搜索最新排名 【机器学习算法】:排名第一 【机器学习】:排名第二 【Python】:排名第三 【算法】:排名第四 前言 在(机器学习(9)之ID3算法详解及python实现)中讲到了ID3算法,在(机器学习(11)之C4.5详解与Python实现(从解决ID3不足的视角))中论述了ID3算法的改进版C4.5算法。对于C4.5算法,也提到了它的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不能处理回归等。对于这些问题, CART算法大部分做了改进。由于CART算法可以
没有模型很难做好分析,希望记住这句话。 1. 概念含义 1.1.基本概念 决策树分析法又称概率分析决策方法,是指将构成决策方案的有关因素,以树状图形的方式表现出来,并据以分析和选择决策方案的一种系统分析法。它是风险型决策最常用的方法之一,特别式勇敢于分析比较复杂的问题。她以损益值为依据,比较不同方案的期望损益值(简称期望值),决定方案的取舍,其最大特点是能够形象地显示出整个决策问题在时间上和不同阶段上的决策过程,逻辑思维清晰,层次分明,非常直观。 2. 主要内容 2.1. 结构 决策树是由不同结点和方案枝构
今天是我坚持的第两百一十一天!每天逼自己成长进步一点! 假如你是一个女孩子,你妈妈一直很为你的终身大事担心,今天又要给你介绍对象了。你随口一问:多大了?她说:26。 你问:长得帅不帅?她说:挺帅的。 你问:收入高不高?她说:不算很高,中等情况。 你问:人上进吗?她说:上进。 你说:那好的,我去见见。 找男朋友,绝对是比找工作、创业、投资公司,更重要的战略决策。这么重要的决策,有没有一些商业工具可用呢? 当然。今天我要与你分享一个工具:决策树(Decision Tree)。 什么叫决策树? 其实你刚才那连珠炮
今天,给大家推荐最常用的10种机器学习算法,它们几乎可以用在所有的数据问题上: 1、线性回归 线性回归通常用于根据连续变量估计实际数值(房价、呼叫次数、总销售额等)。我们通过拟合最佳直线来建立自变量和因变量的关系。这条最佳直线叫做回归线,并且用 Y= a *X + b 这条线性等式来表示。 理解线性回归的最好办法是回顾一下童年。假设在不问对方体重的情况下,让一个五年级的孩子按体重从轻到重的顺序对班上的同学排序,你觉得这个孩子会怎么做?他(她)很可能会目测人们的身高和体型,综合这些可见的参数来排列他们。这是
1、线性回归 线性回归通常用于根据连续变量估计实际数值(房价、呼叫次数、总销售额等)。我们通过拟合最佳直线来建立自变量和因变量的关系。这条最佳直线叫做回归线,并且用 Y= a *X + b 这条线性等式来表示。 理解线性回归的最好办法是回顾一下童年。假设在不问对方体重的情况下,让一个五年级的孩子按体重从轻到重的顺序对班上的同学排序,你觉得这个孩子会怎么做?他(她)很可能会目测人们的身高和体型,综合这些可见的参数来排列他们。这是现实生活中使用线性回归的例子。实际上,这个孩子发现了身高和体型与体重有一定的关系,
机器学习(十)——使用决策树进行预测(离散特征值) (原创内容,转载请注明来源,谢谢) 一、绘制决策树 决策树的一大优点是直观,但是前提是其以图像形式展示。如果是{'color': {9: 'yes', 2: {'fly': {0: 'no', 1: {'big': {0: 'no', 1:'yes'}}}}, 3: 'no'}}这种类型的决策树,不够直观。 这就是绘制决策树的目的。 绘制决策树,需要用到python的matplotlib类库,其带有丰富的注解、绘图等功能。我希望更加专注于算法本身,而
决策树算法是一种常用的机器学习算法,适用于处理分类和回归问题。在Python数据分析中,决策树算法被广泛应用于预测分析、特征选择和数据可视化等领域。本文将详细介绍决策树算法的原理、Python的实现方式以及相关的实用技术点。
信贷是一个非常严谨的行业,对实时风控的性能、精度和可靠性都有很高的要求。蚂蚁集团围绕信贷业务实时场景打造高可用、高并发、数据智能的在线实时风控系统,上千条实时策略只需要 25ms、服务可靠性 99.99%+。在 7 月 21-22 日深圳 ArchSummit 全球架构师峰会上,来自蚂蚁集团的高级技术专家马希民分享了,基于信贷实时风控,构建数据智能的高可用实时风控决策系统实践。以下是演讲内容整理。
回顾上一篇文章讲到的聚合模型,三个臭皮匠顶一个诸葛亮。于是出现了blending,bagging,boost,stacking。blending有uniform和non-uniform,stacking是属于条件类的,而boost里面的Adaboost是边学习边做linear,bagging也是属于边学习边做uniform的。Decision Tree就是属于边做学习然后按照条件分的一种。如下图,aggregation model就是是补全了:
决策树是一种常用的机器学习算法,既可以用于分类问题,也可以用于回归问题。它的工作原理类似于人类的决策过程,通过对特征的问询逐步进行分类或者预测。本文将详细介绍决策树的原理、实现步骤以及如何使用Python进行编程实践。
参看书籍:Machine Learning(Tom Mitchell) 之前我们已经比较详细的介绍啦决策树的相关知识,如ID3(Machine Learning -- ID3算法)和C4.5(Machine learning -- C4.5算法详解及Python实现). 本文章介绍决策树学习的实际问题包括确定决策树增长的深度;处理连续值的属性;选择一个适当的属性筛选度量标准;处理属性值不完整的训练数据;处理不同代价的属性;以及提高计算效率。下面我们讨论每一个问题,并针对这些问题扩展基本的ID3算法。事实上,
在本文中,决策树是对例子进行分类的一种简单表示。它是一种有监督的机器学习技术,数据根据某个参数被连续分割。决策树分析可以帮助解决分类和回归问题
决策树是一种常用的机器学习算法,它可以用于分类和回归任务。在本文中,我们将使用Python来实现一个基本的决策树分类器,并介绍其原理和实现过程。
决策树是对例子进行分类的一种简单表示。它是一种有监督的机器学习技术,数据根据某个参数被连续分割。决策树分析可以帮助解决分类和回归问题。
这一节学习使用包party里面的函数ctree()为数据集iris建立一个决策树。属性Sepal.Length(萼片长度)、Sepal.Width(萼片宽度)、Petal.Length(花瓣长度)以及Petal.Width(花瓣宽度)被用来预测鸢尾花的Species(种类)。在这个包里面,函数ctree()建立了一个决策树,predict()预测另外一个数据集。
根据已有的车祸数据信息,计算严重车祸发生率最高和最低的地区;并对车祸发生严重程度进行因素分析,判断哪些外界环境变量会影响车祸严重程度,分别有怎样的影响。
一、决策树原理 决策树是用样本的属性作为结点,用属性的取值作为分支的树结构。 决策树的根结点是所有样本中信息量最大的属性。树的中间结点是该结点为根的子树所包含的样本子集中信息量最大的属性。决策树的叶结点是样本的类别值。决策树是一种知识表示形式,它是对所有样本数据的高度概括决策树能准确地识别所有样本的类别,也能有效地识别新样本的类别。 决策树算法ID3的基本思想: 首先找出最有判别力的属性,把样例分成多个子集,每个子集又选择最有判别力的属性进行划分,一直进行到所有子集仅包含同一类型的数据为止。最后得到一棵决
雷军在创业之初,用了两年半的时间,把手机从零做到了中国出货量第一,全球出货量第三。然而在过去的两年,小米也遇到了坎坷。2016年的时候,小米手机全球出货量跌出了前5名。
最近我们被客户要求撰写关于电商购物网站的用户行为的研究报告,包括一些图形和统计输出。
决策树呢,在机器学习的算法里也是比较常见的一种分类与回归算法了。决策树模型是树状图结构,在分类问题中,表示基于特征对实例进行分类的过程。其实从简单角度来讲就是两个选择不是“是”就是“否”。下面我们从简单的图画中看一下什么是决策树吧!
有时候,我们可能想用Python绘制决策树,以了解算法如何拆分数据。决策树可能是最“易于理解”的机器学习算法之一,因为我们可以看到如何正确地作决策。
本文从单棵决策树讲起,然后逐步解释了随机森林的工作原理,并使用sklearn中的随机森林对某个真实数据集进行预测。
来源:Analytics Vidhya 编译:Bot 编者按:通常,我们会把基于树形结构的学习算法认为是最好的、最常用的监督学习方法之一。树能使我们的预测模型集高精度、高稳定性和易解释于一身,与线性模型不同,它能更好地映射非线性关系,适用于解决分类或回归等任何问题。 谈及基于树的学习算法,决策树、随机森林、gradient boosting等是现在被广泛应用于各种数据科学问题的一些方法。本文旨在帮助初学者从头开始学习基于树形结构进行建模,虽然没有机器学习知识要求,但仍假设读者具备一定的R语言或Python基
最近我们被客户要求撰写关于信贷风险预警的研究报告,包括一些图形和统计输出。 我国经济高速发展,个人信贷业务也随着快速发展,而个人信贷业务对提高内需,促进消费也有拉动作用
本文通过 SQL Server Analysis Services数据挖掘的分析模块,帮助客户对一个职业、地区、餐饮消费水平的数据挖掘,并用可视化分析图表显示数据
本文以银行贷款数据为案例,对是否批准顾客贷款申请的决策过程进行了算法构建,并对比了决策树与随机森林两种机器学习算法之间的异同及各自的优劣。
决策树算法是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法。
来源:Python中文社区 作者:weapon 本文长度为700字,建议阅读5分钟 本文介绍如何不利用第三方库,仅用python自带的标准库来构造一个决策树。 起步 熵的计算: 根据计算公式: 对应的
一个单身狗写下这个标题我是心虚!!! 很早就听说过决策树算法的威力,很早之前就做过决策树模型的分析和应用,这次就来看看决策树算法的操作和实际运用。 首先,要先理解什么是决策树呢? 根据我的理解,再加上
1)访问此数据集,请单击“进程”选项卡,然后转到存储库并单击显示数据的存储库,然后打开下拉菜单以查看数据集“Iris”,如下图所示。
本文使用Matlab编程语言中的决策树和模糊C-均值聚类算法,帮助客户对大学教师职称、学历与评分之间的关系进行深入分析。
借着二胎政策的开放与家庭消费升级的东风,母婴市场迎来了生机盎然的春天,尤其是母婴电商行业,近年来发展迅猛。用户获取和流失是一对相对概念,就好比一个水池,有进口,也有出口。我们不能只关心进口的进水速率,却忽略了出水口的出水速率。挽留一个老用户相比拉动一个新用户,在增加营业收入、产品周期维护方面都是有好处的。并且获得一个新用户的成本是留存一个老用户的5~6倍。
一个简单的方法就是将每一个特征的幂次方添加为一个新的特征,然后在这个拓展的特征集上进行线性拟合,这种方法成为多项式回归。
基于树的学习算法是十分流行且应用广泛的一类非参数化的有监督学习算法,这些算法既可用于分类又可用于回归。基于树的学习算法的基础是包含一系列决策规则(例如,“如果他们是男性……”)的决策树。这些决策规则看起来很像一棵倒置的树,第一个决策规则在顶部,随后的决策规则在其下面展开。在决策树中,每个决策规则产生一个决策节点,并创建通向新节点的分支。终点处没有决策规则的分支被称为叶子节点(leaf)。
專 欄 ❈ 作者:weapon,不会写程序的浴室麦霸不是好的神经科医生 ❈ 起步 本章介绍如何不利用第三方库,仅用python自带的标准库来构造一个决策树。 熵的计算公式: 对应的 python 代码
起步 本章介绍如何不利用第三方库,仅用python自带的标准库来构造一个决策树。 熵的计算公式: 对应的python代码: 条件熵的计算 根据计算方法: 对应的python代码: 其中参数future_list是某一特征向量组成的列表,result_list是label列表。 信息增益 根据信息增益的计算方法: 对应的python代码: .. 定义决策树的节点 作为树的节点,要有左子树和右子树是必不可少的,除此之外还需要其他信息: 树的节点会有两种状态,叶子节点中results属性将
最近刚好有项目要用决策树实现,所以把整理的Python调用sklearn实现决策树代码分享给大家。
Python数据分析是指使用Python编程语言对数据进行收集、处理、分析和可视化的过程。Python是一种非常流行的编程语言,具有简单易学、代码可读性高、生态系统强大的特点,因此在数据科学领域得到广泛应用。
本文中我们介绍了决策树和随机森林的概念,并在R语言中用逻辑回归、回归决策树、随机森林进行信用卡违约数据分析(查看文末了解数据获取方式)
领取专属 10元无门槛券
手把手带您无忧上云