虽然互联网上有很多关于 OpenCV 的 Haar Cascade 对象检测模块这方面的技术资料,但这篇文章的重点是通俗易懂地解释这些概念,希望这能帮助初学者以简单的方式理解 Python 的 OpenCV 库。
在游戏开发中,我们经常会回使用到边框检测。我们知道,边框检测是计算机视觉中常用的技术,用于检测图像中的边界和轮廓。在Python中,可以使用OpenCV库来实现边框检测。具体是怎么实现的?以下是一个简单的示例代码,演示如何在Python中使用OpenCV进行边框检测:
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u012162613/article/details/43523507
关注并星标 从此不迷路 计算机视觉研究院 公众号ID|ComputerVisionGzq 学习群|扫码在主页获取加入方式 计算机视觉研究院专栏 作者:Edison_G 本文主要讲解几个部分,(适合一些在读的研究生啥也不会然后接到一些项目无从下手,如果是大佬的话就可以跳过了)先看看网络摄像头的效果吧(在2060的电脑上运行 ) 转自《知乎——kaka》 实践时间Pipeline 2021年9月18日,在github上发布了一套使用ONNXRuntime部署anchor-free系列的YOLOR,依然
请注意,即使是在Pong游戏中,矩形物体与圆形物体(如球拍和球)的碰撞也可以通过两个矩形物体(球拍和球的边界矩形)之间的碰撞来粗略地检测到。
人脸识别是一种可以自动检测图像或视频中存在的人脸的技术。它可以用于各种应用,例如安全控制,自动标记照片和视频,以及人脸识别解锁设备等。在这篇博客中,我们将详细讨论人脸识别技术,以及如何使用 Python 中的 OpenCV 库实现人脸识别。
https://github.com/maelfabien/Machine_Learning_Tutorials
本教程将介绍如何使用 OpenCV 和 Dlib 在 Python 中创建和运行人脸检测算法。同时还将添加一些功能,以同时检测多个面部的眼睛和嘴巴。本文介绍了人脸检测的最基本实现,包括级联分类器、HOG 窗口和深度学习 CNN。
前言 什么是NMS算法呢?即非极大值抑制,它在目标检测、目标追踪、三维重建等方面应用十分广泛,特别是在目标检测方面,它是目标检测的最后一道关口,不管是RCNN、还是fast-RCNN、YOLO等算法,都使用了这一项算法。 一、概述 非极大值抑制(Non-Maximum Suppression,NMS),顾名思义就是抑制不是极大值的元素,可以理解为局部最大搜索。这个局部代表的是一个邻域,邻域有两个参数可变,一是邻域的维数,二是邻域的大小。这里不讨论通用的NMS算法(参考论文《Efficient Non-Maximum Suppression》对1维和2维数据的NMS实现),而是用于目标检测中提取分数最高的窗口的。例如在行人检测中,滑动窗口经提取特征,经分类器分类识别后,每个窗口都会得到一个分数。但是滑动窗口会导致很多窗口与其他窗口存在包含或者大部分交叉的情况。这时就需要用到NMS来选取那些邻域里分数最高(是行人的概率最大),并且抑制那些分数低的窗口。 NMS在计算机视觉领域有着非常重要的应用,如视频目标跟踪、数据挖掘、3D重建、目标识别以及纹理分析等。本文主要以目标检测中的应用加以说明。
随着去年alphago 的震撼表现,AI 再次成为科技公司的宠儿。AI涉及的领域众多,图像识别中的人脸识别是其中一个有趣的分支。百度的BFR,Face++的开放平台,汉王,讯飞等等都提供了人脸识别的API,对于老码农而言,自己写一小段代码,来看看一张图片中有几个人,没有高大上,只是觉得好玩,而且只需要7行代码。
最近在微信公众号里看到多篇讲解yolov5在openvino部署做目标检测文章,但是没看到过用opencv的dnn模块做yolov5目标检测的。于是,我就想着编写一套用opencv的dnn模块做yolov5目标检测的程序。在编写这套程序时,遇到的bug和解决办法,在这篇文章里讲述一下。
原文链接:https://yetingyun.blog.csdn.net/article/details/108153075 创作不易,未经作者允许,禁止转载,更勿做其他用途,违者必究。
特别要关注的是图中三个黑色正方形区域,它们就是用来定位一个二维码的最重要的三个区域,我们二维码扫描不检测首先要做的就是要发现这三个区域,如果找到这个三个区域,我们就成功的检测到一个二维码了,就可以对它定位与识别了。三个角上的正方形区域从左到右,从上到下黑白比例为1:1:3:1:1。不管角度如何变化,这个是最显著的特征,通过这个特征我们就可以实现二维码扫描检测与定位。
人脸检测的常见步骤如下,如果想要将人脸准确地检测出来,需要通过建立人脸模型,获取准确区分人脸的分类器,这里我们使用网上公开的扩展包或已经训练好的分类器。
https://drive.google.com/file/d/1PPO2MCttsmSqyB-vKh5C7SumwFKuhgyj/view
本程序主要实现了python的opencv人工智能视觉模块的口罩检测实时语音检测报警。
1.1什么是轮廓 轮廓可以简单认为成连续的点(连着边界)连在一起的曲线,具有相同的颜色或者灰度。轮廓在形状分析和物体的检测和识别中很有用。
图片人脸检测 人脸检测使用到的技术是OpenCV,上一节已经介绍了OpenCV的环境安装,点击查看. 功能展示 识别一种图上的所有人的脸,并且标出人脸的位置,画出人眼以及嘴的位置,展示效果图如下:
Dlib 是用编程语言 C ++编写的通用跨平台软件库。它的设计深受来自契约式设计和基于组件的软件工程的思想的影响。因此,首先也是最重要的是一组独立的软件组件。这是一个加速软件许可证下发布的开源软件。
在本文中,我们将看到一种使用Python和开放源码库开始人脸识别的非常简单的方法。
场景文字识别 目标检测任务的目标是给定一张图像或是视频帧,让计算机找出其中所有目标的位置,并给出每个目标的具体类别。对于人类来说,目标检测是一个非常简单的任务。然而,计算机能够“看到”的仅有一些值为0 ~ 255的矩阵,很难解图像或是视频帧中出现了人或是物体这样的高层语义概念,也就更加难以定位目标出现在图像中哪个区域。与此同时,由于目标会出现在图像或是视频帧中的任何位置,目标的形态千变万化,图像或是视频帧的背景千差万别,诸多因素都使得目标检测对计算机来说是一个具有挑战性的问题。 【目标检测】 SSD目标
目标定位和检测系列(3):交并比(IOU)和非极大值抑制(NMS)的python实现
上一篇文章小编给大家讲解了需求分析和实现思路,Python项目实战篇——常用验证码标注和识别(需求分析和实现思路),这篇文章继续沿着上一篇文章的内容,给大家讲解下数据采集/预处理/字符图切割内容。
上个月,百度飞桨团队开源了其最新SOTA通用检测模型——PP-YOLOE+,COCO数据集精度达54.7mAP,其l版本相比YOLOv7精度提升1.9%,V100端到端(包含前后处理)推理速度达42.2FPS,文章回顾请戳:
F:\opencv4.2_release\opencv\sources\samples\python\squares.py
在目标检测中一个很重要的问题就是NMS及IOU计算,而一般所说的目标检测检测的box是规则矩形框,计算IOU也非常简单,有两种方法:
OpenCV是一个计算机视觉和机器学习的开源库。拥有2500+个优化算法——一套非常全面的既经典又最先进的计算机视觉和机器学习算法的集合,具备很多接口,包括Python,Java,C++和Matlab。
使用 OpenCV 和 Python 上对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能。 本文分两个部分。 在第一部分中,我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中。这个任务会通过 VideoStream 类来完成。 深度学习目标检测教程:http://www.pyimagesearch.com/2017/09/11/object-detection-with-deep-
选自PyimageSearch 机器之心编译 参与:路雪、李泽南 使用 OpenCV 和 Python 对实时视频流进行深度学习目标检测是非常简单的,我们只需要组合一些合适的代码,接入实时视频,随后加入原有的目标检测功能。 在本文中我们将学习如何扩展原有的目标检测项目,使用深度学习和 OpenCV 将应用范围扩展到实时视频流和视频文件中。这个任务会通过 VideoStream 类来完成。 深度学习目标检测教程:http://www.pyimagesearch.com/2017/09/11/object-de
目标检测中,原始图片的标注过程是非常重要的,它的作用是在原始图像中标注目标物体位置并对每张图片生成相应的xml文件表示目标标准框的位置。本文介绍一款使用方便且能够标注多类别并能直接生成xml文件的标注工具——labelImg工具,并对其使用方法做一个介绍。
对于上面的图像,如何使用OpenCV进行人脸检测呢? 使用OpenCV进行人脸检测十分简单,OpenCV官网给了一个Python人脸检测的示例程序,
OpenCV 是一个强大的图片处理工具,尤其是随着人工智能、图片识别等行业的兴起,这个第三方库也越来越受到重视,今天我们就一起来开启 OpenCV 之旅
代码发布在github中https://github.com/luyishisi/The_python_code.git文件夹是face-gensui
最近在对接公司一些新闻接口的时候,发现接口茫茫多:CMS接口、无线CMS接口、正文接口、列表接口……更令人捉急的是,由于新闻推送场景不同,每条新闻的配图尺寸也就不同,比如PC要求高清大图,而移动端就会根据屏幕尺寸要求各种尺寸的小图,一个接口也就要吐出好几个尺寸的图片供客户端使用。比如无线CMS的接口里就需要640330、150120、280*210……那么问题来了,难道每多一种尺寸就需要编辑裁一次图上传到CMS?
Opencv自带训练好的人脸模型(人脸的人眼、口等器官类似),此文基于vs2013建立应用台单文档程序,具体建立过程不予详细叙述,主要记录利用的Opencv自带的分类器和训练好的人脸模型。 一、编程前的准备 (1)Haar特征分类器 Haar特征分类器就是一个XML文件,该文件中会描述人体各个部位的Haar特征值。包括人脸、眼睛、嘴唇等等。 Haar特征分类器存放目录:OpenCV安装目录中的\data\ haarcascades目录下,例如: haarcascade_eye.xml haarcasc
还有很多,懒得发了,通过讨论,问题基本上都已经解决了,本来懒得写了,觉得太花时间了,想了想决定还是写吧,别问为啥,问就是热爱编程,乐于助人。
我们经常看到与一些网站,比如支付宝,只需要刷脸就可以登录成功。只要我们开启了刷脸支付的功能,之后就可以支付了。那么现在我们也想做一个简单的这种功能,比如说我们的毕设,我们想做一个打卡功能,每天只有刷脸才可以打卡。那么这个咋做呢?这个时候就需要OpenCV了。
本来学习OpenCV的目的就是为了做人脸识别、车辆识别、人群计数等等,识别人脸首先要进行人脸检测,OpenCV中内置了Haar Cascade人脸分类器,其中包括haarcascade_frontalface_alt、haarcascade_frontalface_alt_tree、haarcascade_frontalface_alt2、haarcascade_frontalface_default这四种,本文不求甚解,只是从比对上判断一下这几种内置分类器的可用性。
(1)首先下载opencv(网址:opencv),在这里我选择的是opencv_python‑4.1.2+contrib‑cp36‑cp36m‑win_amd64.whl 。 (2)下载好后,把它放到任意盘中(这里我放的是D盘),切换到安装目录,执行安装命令:pip install opencv_python‑4.1.2+contrib‑cp36‑cp36m‑win_amd64.whl
安装好 pygame 在第一次使用 pygame 的时候,pyCharm 会自动 install pygame。
人脸识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。用摄像机或摄像头采集含有人脸的图像或视频流,并自动在图像中检测和跟踪人脸,进而对检测到的人脸进行脸部识别的一系列相关技术,通常也叫做人像识别、面部识别。
OpenCV的Haar级联分类器可以通过对比分析相邻图像区域的特征来判断给定图像或子图像与已知对象是否匹配,从而给图像进行分类。提取图像的细节对产生稳定可靠的分类结果很有用。这些提取的结果被称为特征。特征的数量通常应该比像素数少得多。两个图像的相似程度可以通过它们的特征向量的距离来计算。
选自hackster 作者:MJRoBot 机器之心编译 本文介绍了如何在树莓派上,使用 OpenCV 和 Python 完成人脸检测项目。该项目不仅描述了识别人脸所需要的具体步骤,同时还提供了很多扩
假设你购买大米时发现它有两种包装。你会别写一个程序比较这两种包装的价钱。程序提示用户输入每种包装的重量和价钱,然后显示价钱更好的那种包装。下面是个示例运行
注意 在Pygame中,原点(0, 0)位于屏幕左上角,向右下方移动时,坐标值将增大。在1200×800 的屏幕上,原点位于左上角,而右下角的坐标为(1200, 800)。
您已经读了这本书,因此您可能已经对 OpenCV 是什么有了个概念。 也许您听说过似乎来自科幻小说的功能,例如训练人工智能模型以识别通过相机看到的任何东西。 如果这是您的兴趣,您将不会感到失望! OpenCV 代表开源计算机视觉。 它是一个免费的计算机视觉库,可让您处理图像和视频以完成各种任务,从显示网络摄像头中的帧到教机器人识别现实中的物体。
在上一篇文章:【计算机视觉——RCNN目标检测系列】二、边界框回归(Bounding-Box Regression)中我们主要讲解了R-CNN中边界框回归,接下来我们在这篇文章我们讲解R-CNN中另外一个比较种重要的模块——IoU与非极大抑制。
PCB板缺陷检测机器视觉识别系统通过python+yolo系列网络深度学习模型对PCB电路板外观实时监测,PCB板缺陷检测机器视觉识别系统监测到有缺陷的PCB板时立即抓拍存档。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。
领取专属 10元无门槛券
手把手带您无忧上云