首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Leetcode 300. Longest Increasing Subsequence

    **解析:**Version 1,最长递增子序列,典型的动态规划问题,定义状态:以nums[i]作为结尾元素的最长递增子序列的长度,状态转移方程:遍历nums[i]之前的元素nums[j],如果nums[i] > nums[j],则其最长递增子序列的长度为max(dp[i], dp[j] + 1),遍历之后,可以找到以nums[i]作为结尾元素的最长递增子序列长度,最终返回的是所有元素的最长递增子序列长度中最长的一个。Version 2是一种技巧,使用order作为有序序列保持最长递增子序列长度,当新元素比有序序列的最后一个元素大时,此时增加新元素到有序序列中,否则,则将新元素插入到当前序列中,替换比其大或相等的元素,保证左侧元素都比它小,此时长度不变,order中始终保留较小的元素,这样利于插入新元素。order的长度等于最长递增子序列长度,但order的数据不一定等于最长递增子序列的数据。

    01
    领券