首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

Python|张量创建操作

张量创建操作 张量的随机创建包含的方法有:torch.rand(),torch.randlike(),torch.randn(),torch.randnloike(),torch.randint(),torch.randint_like...device:可选参数,返回张量的设备,默认使用当前设备。有cpu张量和cuda张量两种形式。 requires_grad:可选参数,bool。默认False,如果自动梯度会在返回的张量上记录操作。...默认False,只在cpu张量上有效。设置之后返回的张量会被分配到指定的内存。...参数 input(Tensor):输入张量 size(tuples或ints):输出张量的形状 stride(tuple或ints):输出张量的步长 storage_offset(int,可选参数):输出张量在存储中的偏移...layout(torch.layout,可选参数):默认是torch.strided,指定返回张量的layout device(可选参数):默认None返回当前的张量类型 requires_grad(bool

1.4K10
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    Python|张量创建操作

    参数 input(Tensor):需要量化的浮点张量 scales(Tensor):一维张量,给每个通道指定scale,大小是input.size(axis) zero_points(Tensor):...,张量需要有相同的形状,或者为空也可以 参数 Tensors(Tensor序列):需要连接的张量序列 dim(int,可选参数):张量连接的维度 out:输出张量 例子 >>> x =...,每个块是输入张量的view 最后一个块如果张量沿着指定的维度不可分割成指定形状的块,那么最后一个块形状更小 参数 input(Tensor):需要分割的张量 chunks(int):需要返回的块数量...,xn-1),输出张量out则和index一样的size 参数 input(Tensor):源张量 dim(int):索引的轴 index:需要收集元素的索引 out sparse_grad(bool,...,沿input指定的dim索引,index是一个长张量 返回的张量和源张量维度相同,指定dim的这个维度和index一样长度,其他的维度和源张量一样 返回张量开辟新的内存,如果输出张量out的shape

    64610

    Python|张量创建操作

    10.0, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor 返回一个一维的张量...:点集的开始值 end:点集的结束值 steps(int):默认100,在start和end之间点集的数量 base(float):对数函数的底值,默认10.0 out(Tensor,可选参数):输出张量...None, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False) → Tensor 返回一个2维的张量...:整数序列,可以是集合,list,tuple等等 out dtype layout device requires_grad pin_memory(bool,可选参数):只对cpu张量有效,默认False...参考函数名称后缀带like的使用 torch.quantizepertensor(input, scale, zero_point, dtype) → Tensor 根据给出的scale和零点,把浮点类型的张量量化成的新张量

    77310

    PyTorch张量

    PyTorch 中的张量就是元素为同一种数据类型的多维矩阵。在 PyTorch 中,张量以 "类" 的形式封装起来,对张量的一些运算、处理的方法被封装在类中。...基本创建方式 torch.tensor 根据指定数据创建张量 torch.Tensor 根据形状创建张量, 其也可用来创建指定数据的张量 torch.IntTensor、torch.FloatTensor...PyTorch 计算的数据都是以张量形式存在, 我们需要掌握张量各种运算。...张量的基本运算包括多种操作: 加法和减法:两个同阶张量可以进行元素对元素的加法和减法运算。 标量乘法:一个标量可以与任何阶的张量相乘,结果是将原张量的每个元素乘以该标量。...张量积(Kronecker积):用于组合两个张量来创建一个新的高阶张量。 特定运算:包括对称张量的运算、反对称张量的运算、迹运算等。

    13710

    张量 – Tensor

    文章目录 小白版本 张量是属于线性代数里的知识点,线性代数是用虚拟数字世界表示真实物理世界的工具。...百度百科版本 张量(tensor)理论是数学的一个分支学科,在力学中有重要应用。张量这一术语起源于力学,它最初是用来表示弹性介质中各点应力状态的,后来张量理论发展成为力学和物理学的一个有力的数学工具。...张量之所以重要,在于它可以满足一切物理定律必须与坐标系的选择无关的特性。张量概念是矢量概念的推广,矢量是一阶张量张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。...查看详情 维基百科版本 在数学中,张量是一种几何对象,它以多线性方式将几何向量,标量和其他张量映射到结果张量。因此,通常在基础物理和工程应用中已经使用的矢量和标量本身被认为是最简单的张量。...另外,来自提供几何矢量的矢量空间的双空间的矢量也被包括作为张量。在这种情况下,几何学主要是为了强调任何坐标系选择的独立性。 查看详情

    1.2K20

    张量张量网络背景和意义-基础知识

    实际上,一阶张量代表的一个矢量,比如我们平时用python所定义的一个数组变量: 1 2 3 x = [1, 0] y = [0, 1, 0] z = [1, 2, 3, 4] 那么这里的x,y,z都是一阶的张量...而二阶张量所表示的含义是一个二维的矩阵,如我们常见的python多维数组: 1 2 M = [[1, -1], [-1, 1]] N = [[1, 3], [2, 4], [5, 6]] 这里定义的M,...在上述的python变量定义中,pi就是一个零阶的张量,零阶张量实际上就等同于一个标量,而P, Q都是三阶的张量。...需要注意的是,虽然张量P只有一个元素,但是如果我们需要读取这个标量元素,我们必须使用如下的python指令来执行: print (P[0][0][0]) 因此P也是一个有三条腿的张量。...我们先以两种形式的python矩阵运算来说明张量计算的表示方法: 1 2 3 4 5 6 7 import numpy as np M = np.random.rand(2, 2) v = np.random.rand

    1.7K10

    TensorFlow张量知识

    TensorFlow张量 本文记录的是TensorFlow中的张量基础知识,包含: 张量类型 张量数据类型 张量创建 张量类型 维数 阶 名字 例子 0-D 0 标量scalar s = 1,2,3 1...-D 1 vector v = [1,2,3] 2-D 2 matrix m = [[1,2,3],[4,5,6]] n-D n tensor t = [[[ (有n个括号) 张量可以表示0-n阶的数组...创建张量Tensor 创建张量的一般方式: tf.constant(张量内容, dtype=数据类型[可选]) 直接生成 import tensorflow as tf import numpy as...dtype=int64, numpy=array([0, 1, 2, 3, 4])> arr_to_tf.shape TensorShape([5]) type(arr_to_tf) tensorflow.python.framework.ops.EagerTensor...创建特殊张量 维度的记忆方式: 一维:直接写个数 二维:用[行, 列]表示 多维:用[n,m,j,k…]表示 全0张量 tf.zeros(3) <tf.Tensor: shape=(3,), dtype

    29930

    张量的基础操作

    张量 张量是一个多维数组,它是标量、向量和矩阵概念的推广。在深度学习中,张量被广泛用于表示数据和模型参数。 具体来说,张量的“张”可以理解为“维度”,张量的阶或维数称为秩。...例如,零阶张量是一个标量,一阶张量是一个向量,二阶张量是一个矩阵,三阶及以上的张量则可以看作是高维数组。 在不同的上下文中,张量的意义可能会有所不同: 数据表示:在深度学习中,张量通常用于表示数据。...在深度学习框架中,张量索引操作通常用于访问和修改张量中的数据。以下是一些基本的张量索引操作: 基础索引:可以通过指定张量的维度和对应的索引值来获取张量中的特定元素。...负数步长:在Python的传统列表中,步长可以为负数,表示倒序排列。但在张量中,步长必须大于0,否则会报错。这意味着不能使用负数步长来逆序索引张量元素。...if __name__ == '__main__': test() # tensor([7, 3]) # tensor([[7, 6], [8, 3]]) 范围索引:类似于Python

    15410

    Python报错合集】Python元组tuple、张量tensor(IndexError、TypeError、RuntimeError……)~持续更新

    Python中,len()函数用于获取对象的长度或大小。然而,对于零维张量,它没有定义长度的概念,因此无法使用len()函数。...c.解决方案   要解决这个问题,你需要检查代码中对零维张量使用len()函数的部分,并确保该操作适用于张量的形状。如果你需要获取零维张量的值,可以使用其他适当的方法,例如item()函数。...具体来说,张量a的大小为3,张量b的大小为4,在非单例维度0上大小不匹配。...可能的原因包括: 你正在尝试对两个张量进行相加或相乘等操作,但它们的形状不兼容。在这种情况下,你需要调整其中一个张量的形状,使其与另一个张量具有相同的形状。...c.解决方案   要解决这个问题,你可以将张量的数据类型更改为浮点数类型,以便能够要求梯度。你可以使用torch.float将整数张量转换为浮点数张量,然后再要求梯度。

    10510
    领券