数据拟合又称曲线拟合,俗称拉曲线,是一种把现有数据透过数学方法来代入一条数式的表示方式。
R语言内置强大的向量运算,是搞数据分析的强大的编程语言,而Python也毫不逊色。今天就试着分析一下考试成绩表中两门科目的相关性。 问题描述: 有一个CSV文件,包含着600名学生在一次考试后的几门课程的考试成绩,想分析一下数学和物理成绩的相关关系。CSV数据样例: num,class,chinese,math,english,physical,chemical,politics,biology,history,geo,pe 158,3,99,120,114,70,49.5,50,49,48.5,49.5,
本文是 Python 系列的 Cufflinks 补充篇。整套 Python 盘一盘系列目录如下:
爱因斯坦喊你点击右上角蓝色“思影科技”关注我们 最近不少读者对高大上的机器学习,动态脑网络,曲面形态指标共变网络感到爱不起,针对于此,我们特别推出一些基本的做脑功能的概念讲解,希望大家一步一步来,年轻人,不要动不动想一步登天,识得唔识得啊? 那今天我们就谈谈这个相关系数……. 说起相关系数,从字面上的含义就可看出,就是两个信号之间的相关性。但是你真正理解内在的机理吗? 结论放在最前面:相关系数,其实就是通过散点图来的。 学会散点图,此生无憾! 所有的一切,由这个图说起: 图1
今天给大家介绍三剑客之一Matplotlib的使用。首先简单介绍用Matplotlib绘制2D和3D图表,具体的方法和属性并没有过多介绍,但是代码中都做了响应的介绍。
在Python数据可视化领域,知名度最高的当属 matplotlib,但此库存在操作复杂的问题。基于此,seaborn简化了操作流程而闻名,尽管其使用方式仍存在一些缺点。因此,在经历10年的打磨后,seaborn团队在更新至0.12版时提出了全新的操作模式。试用之后,已经不想再用回旧模式了。下面我们就体验一下新版seaborn。
plt.scatter相对于plt.plot的主要优势在于,前者在创建散点图时具有更高的灵活性,可以单独控制每个散点与数据匹配,也可以让每个散点具有不同的属性(大小,表面颜色,边框颜色等)
回归算法是机器学习的一个基础算法,简单的就是线性回归,还有非线性回归。本节我们讲解简单的线性回归。
本文以实用为第一目标,保证读者在看完此文之后可以迅速上手 p y t h o n python python画图,掌握所有画图的基本技巧。
plot(x) 以x的元素值为纵坐标、以序号为横坐标绘图 plot(x,y) x(在x-轴上)与y(在y-轴上)的二元作图 sunflowerplot(x,y)同上,但是以相似坐标的点作为花朵,其花瓣数目为点的个数 pie(x)饼图 boxplot(x)盒形图(“box-and-whiskers”) stripchart(x)把x的值画在一条线段上,样本量较小时可作为盒形图的替代 coplot(x~y|z)关于z的每个数值(或数值区间)绘制x与y的二元图 interact
版权声明:本文为博主原创文章
目前主流的轻量化路面平整度检测技术方案为:使用车载加速度传感器采集车辆在路面上行驶时的竖向振动数据,并按照每100米计算竖向振动数据统计指标:均方根值RMS,并建立RMS与路面平整度指标:IRI之间的回归模型。检测前需要将车辆行驶至标准路段(即已知IRI真值的路段)上来回行驶对传感器进行标定,完成标定后驾驶车辆前往待检测路段进行平整度检测。
本期推文只要介绍学术散点图的绘制教程,涉及的内容主要还是matplotlib散点图的绘制,只不过添加了相关性分析,拟合关系式和颜色映射散点密度(大多数的英文文章中多出现此类图表)。首先我们看一下下面这幅图:
图中线的两端是圆点或者菱形,旁边都有标注持仓证券商和相对应的持多仓数或持空仓数,且左右线颜色不同。画图思路大体就是:先画水平线图,再用 scatter 散点图画线左右两端的点,然后标注两端名称,以及标题和注解。
应粉丝要求更新一篇散点图相关分析的文章,这个图是否叫这个名字我也不太确定,考虑到这种图的画法大部分是使用散点的形式进行展示,那本文叫相关分析图吧。
上期的推文Python-matplotlib 学术型散点图绘制 推出后,很多小伙伴比较喜欢
天猫官方公布了今年的双11成交额为2684亿元,成功刷新了自己创下的商业纪录。按理说大家已经习惯了逐年增长,没想到
前两期分别介绍了R-ggplot2 基础散点图R-ggplot2 基础图表绘制-散点图和 Python-seaborn基础散点图Python-seaborn 基础图表绘制-散点图 的绘制方法,较为系统的介绍了绘图的基础语法,也为一些绘图基础不是很好的小伙伴提供了参考方法,基础的讲过了,接下里我们将示例应用了啊(也是这个系列推文的流程啊:基础+示例演示),只为让你更好的掌握绘图知识点。本期的推文就使用R-ggplot2进行一个较为经典的图表仿制,也是自己一直想制作的图表。主要涉及的知识点如下:
本帖我们目的只有一个,复现下面视频展示的内容,即中国(上证)和美国(标普 500)2016 年 3 月到 2020 年 4 月的故事走势对比。先点开视频看一看,配着 Fort Minor 的 Remember the Name 的前奏真带感。
python的Scripy提供了丰富的数学工具,python的科学计算包scipy的里面提供了一个函数,可以求出任意的想要拟合的函数的参数。那就是scipy.optimize包里面的leastsq函数。函数原型是:
本期推文,我们使用 R-ggplot2 绘制学术拟合散点图,关注公众号并后台回复"资源分享"即可获取包括本篇教程的数据及其他绘图教程的Python代码和对应数据
刚才画散点图要用到图例,可是matplotlib.pyplot.plot(x,y,’.’)画出的散点图中图例是两个点(因为plot默认画的是线,需要两个端点来表示线,所以是两个点),matplotlib.pyplot.scatter(x,y,’.’)画出的散点图中图例是三个点(这个我理解不了为什么,scatter散点的大小可以自己设置,我猜可能跟这个有关)。
做这张图需要我们有以下编程技巧。前 4 条基础技巧在上一篇文章中已经讲过了,没看过的小伙伴,点击此处传送!
比如说我们有两类数据,各有50十个点组成,当我门把这些点画出来,会有一条线区分这两组数据,我们拟合出这个曲线(因为很有可能是非线性),就是回归。我们通过大量的数据找出这条线,并拟合出这条线的表达式,再
前面两篇推文我们分别介绍了使用Python和R进行IDW(反距离加权法) 插值的计算及结果的可视化过程,详细内容可见如下:
本次挑战内容来自Udacity自动驾驶纳米学位课程,素材中车道保持不变,车道线清晰明确,易于检测,是车道检测的基础版本,网上也有很多针对复杂场景的高级实现,感兴趣的童鞋可以自行了解。
做数据分析和做科普是类似的,科普的意义在于将晦涩难懂的科学知识,以让大众更易接受和理解的方式呈现。而数据分析中的数据可视化做的正是如此关键中的关键,即是将数据的特点以一种显而易见的形式进行呈现。但也不必说的那么高级,我们可以说数据可视化就是“画图”。
创建Axes3D主要有两种方式,一种是利用关键字projection='3d'l来实现,另一种则是通过从mpl_toolkits.mplot3d导入对象Axes3D来实现,目的都是生成具有三维格式的对象Axes3D.
如果说 pandas 是 python 中一个处理数据的好手,那么 matplotlib 则是把这个数据展现在人们眼球面前的使者,本篇我们来学习一下 matplotlib 的用法和 pyplot 的方式作图,他画图便捷,唯一不足的是我觉得它没有那么高大上。
上篇原创推文使用了R-ggplot2 实现了经济学人经典的图表仿制实现R-ggplot2 经典经济学人图表仿制,所以这期呢,我们就使用Python-seaborn实现这个经典的经济学人图表再现。主要涉及的知识点如下:
本文授权转自数据派(datapi) 原文标题:Code for my educational gifs 作者:Rafael Irizarry 翻译:贾琳 编辑:黄继彦 Rafael Irizarry是哈佛大学以及the Dana-Farber Cancer Institute的应用统计教授,他专注于研究基因组学,并且教授数门数据科学课程。在本文中他公开了自己授课时所使用的gif动图的R语言源码,同时也对涉及的几个话题进行了简单的论述,对于希望了解数据科学原理、如何使用R语言来进行可视化的读者都有所
python根据坐标点拟合曲线绘图 import os import numpy as np from scipy import log from scipy.optimize import curve_fit import matplotlib.pyplot as plt import math from sklearn.metrics import r2_score # 字体 plt.rcParams['font.sans-serif']=['SimHei'] # 拟合函数 def func(x,
这篇文章说如何用canvas画出漂亮的下雨效果,先看看最后实现的效果吧。 效果图
原文标题:Code for my educational gifs 作者:Rafael Irizarry 翻译:贾琳 本文长度为1800字,建议阅读4分钟 Rafael Irizarry是哈佛大学以及the Dana-Farber Cancer Institute的应用统计教授,他专注于研究基因组学,并且教授数门数据科学课程。在本文中他公开了自己授课时所使用的gif动图的R语言源码,同时也对涉及的几个话题进行了简单的论述,对于希望了解数据科学原理、如何使用R语言来进行可视化的读者都有所助益。 在日常教学
專 欄 ❈ ZZR,Python中文社区专栏作者,OpenStack工程师,曾经的NLP研究者。主要兴趣方向:OpenStack、Python爬虫、Python数据分析。 Blog:http://skydream.me/ CSDN:http://blog.csdn.net/titan0427/article/details/50365480 ❈—— 1. 背景 文章的背景取自An Introduction to Gradient Descent and Linear Regression
(1)P-P图。以样本的累积频率作为横坐标,以安装正太分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点,如果服从正太分布,则样本点围绕第一象限的对角线分布。
PS:当然也可以用KS检验,利用python中scipy.stats.ks_2samp函数可以获得差值KS statistic和P值从而实现判断。
CAD常用基本操作 1 常用工具栏的打开和关闭:工具栏上方点击右键进行选择 2 动态坐标的打开与关闭:在左下角坐标显示栏进行点击 3 对象捕捉内容的选择:A在对象捕捉按钮上右键点击(对象捕捉开关:F3) B 在极轴选择上可以更改极轴角度和极轴模式(绝对还是相对上一段线) 4 工具栏位置的变化:A锁定:右下角小锁;工具栏右键 B 锁定情况下的移动:Ctrl +鼠标移动 5 清楚屏幕(工具栏消失):Ctrl + 0 6 隐藏命令行:Ctrl + 9 7 模型空间和布局空间的定义:模型空间:无限大三维空间 布局空间:图纸空间,尺寸可定义的二位空间 8 鼠标左键的选择操作:A 从左上向右下:窗围 B 从右下向左上:窗交 9 鼠标中键的使用:A双击,范围缩放,在绘图区域最大化显示图形 B 按住中键不放可以移动图形 10 鼠标右键的使用:A常用命令的调用 B 绘图中Ctrl + 右键调出捕捉快捷菜单和其它快速命令 11 命令的查看:A 常规查看:鼠标移于工具栏相应按钮上查看状态栏显示 B 命令别名(缩写)的查看:工具→自定义→编辑程序参数(acad.pgp) 12 绘图中确定命令的调用:A 鼠标右键 B ESC键(强制退出命令) C Enter键 D 空格键(输入名称时,空格不为确定) 13 重复调用上一个命令: A Enter键 B 空格键 C 方向键选择 14 图形输出命令:A wmfout(矢量图) B jpgout/bmpout(位图)应先选择输出范围 15 夹点的使用:A蓝色:冷夹点 B 绿色:预备编辑夹点 C红色:可编辑夹点 D 可通过右键选择夹点的编辑类型 E 选中一个夹点之后可以通过空格键依次改变夹点编辑的命令如延伸,移动或比例缩放(应注意夹点中的比例缩放是多重缩放,同一图形可在选中夹点连续进行多次不同比例缩放) 16 三维绘图中的旋转:按住Shift并按住鼠标中键拖动 17 . dxf文件:表示在储存之后可以在其它三维软件中打开的文件 18 . dwt文件:图形样板文件,用于自定义样板 19 . dws文件:图形标准文件,用于保存一定的绘图标准 20 对文件进行绘图标准检查并进行修复:打开CAD标准工具栏(工具栏右键)→配置(用于添加自定义的绘图标准;检查(用于根据添加的标准修复新图纸的标准))有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺) 21 绘图中的平行四边形法则(利用绘制四边形绘制某些图形) A两条直线卡一条直线,绘制一个边直线后,通过平移获取另一边直线 B 在圆中绘制相应长度的弦,现在圆心处绘制相同长度的直线,再通过平移获得 22 自定义工具栏命令 CUI或输入Toolbar 其中命令特性宏中的^C^表示取消正在执行的操作 22 循环选择操作方法:Shift+空格 用于图形具有共同边界的情况下的选择 23 系统变量 Taskbar的作用:0表示在工具栏上只显示一个CAD窗口,1表示平铺显示所有CAD窗口
上一篇文章讲了最小二乘算法的原理。这篇文章通过一个简单的例子来看如何通过Python实现最小乘法的线性回归模型的参数估计。
Matplotlib可以说是Python最声名远扬的可视化库了,也是Python数据分析库的“三驾马车”之一。Matplotlib是基础而非常强大的可视化库,Seaborn等好用的可视化库是在前者的基础上进行的封装。Matplotlib擅长快速出简单的图、有丰富的接口进行精细化绘图、和Numpy结合做科学可视化及三维图配合默契、三维图。但也有些缺点,如不容易基于实用目的绘制有一定难度的图表(如小提琴图等)、标签等元素需指定坐标而不能自适应优化显示、难以实现交互。
前面几篇推文我们分辨介绍了使用Python和R绘制了二维核密度空间插值方法,并使用了Python可视化库plotnine、Basemap以及R的ggplot2完成了相关可视化教程的绘制推文,详细内容如下:
前期,分别对python数据分析三剑客进行了逐一详细入门介绍,今天推出系列第4篇教程:seaborn。这是一个基于matplotlib进行高级封装的可视化库,相比之下,绘制图表更为集成化、绘图风格具有更高的定制性。
4、Python基础1 - Python及其数学库 解释器Python2.7与IDE:Anaconda/Pycharm Python基础:列表/元组/字典/类/文件 Taylor展式的代码实现 numpy/scipy/matplotlib/panda的介绍和典型使用 多元高斯分布 泊松分布、幂律分布 典型图像处理
作为Flatiron School数据科学训练营(Data Science Bootcamp)的一名应届毕业生,我收到了大量关于如何在技术面试中取得好成绩的建议:一个不断出现在前沿的软技能是向非技术人员解释复杂机器学习算法的能力。
前几天在Python最强王者交流群有个叫【小王】的粉丝分享一个使用Python画出太极阴阳八卦图的代码,这里拿出来给大家分享下,一起学习下。
时间线是按时间顺序显示的事件列表。它通常是一个图形设计,显示一个长条,标有与之平行的日期,通常是同时期的事件。
作者:石川| 公众号专栏作者 | 量信投资 创始合伙人,清华大学学士、硕士,麻省理工学院博士;精通各种概率模型和统计方法,擅长不确定性随机系统的建模及优化。知乎专栏:https://zhuanlan.zhihu.com/mitcshi。
特征锦囊:今天一起搞懂机器学习里的L1与L2正则化 今天我们来讲讲一个理论知识,也是老生常谈的内容,在模型开发相关岗位中出场率较高的,那就是L1与L2正则化了,这个看似简单却十分重要的概念,还是需要深
领取专属 10元无门槛券
手把手带您无忧上云