Pandas进阶修炼120题系列一共涵盖了数据处理、计算、可视化等常用操作,希望通过120道精心挑选的习题吃透pandas。并且针对部分习题给出了多种解法与注解,动手敲一遍代码一定会让你有所收获!
这里介绍的方法与我们自学习外语的时候使用的方法是有共同之处的,例如我们要学习英语,可以使用以下三个关键的练习帮助我从笨拙地将中文单词翻译成英语,转变为直接用英语思考和回答(英语思维)。
本文精心挑选在数据处理中常见的120种操作并整理成习题发布。并且每一题同时给出Pandas与R语言解法,同时针对部分习题给出了多种方法与注解。本系列一共涵盖了数据处理、计算、可视化等常用操作,动手敲一遍代码一定会让你有所收获!
==值得注意的是,drop函数不会修改原数据,如果想直接对原数据进行修改的话,可以选择添加参数inplace = True或用原变量名重新赋值替换。==
Python 安装包下载地址:https://www.python.org/downloads/ 打开该链接,点击下图中的版本号或者Download按钮进入对应版本的下载页面,滚动到最后即可看到各个平台的 Python 安装包。
字符串是一种常见的数据类型,我们遇到的文本、json数据等都是属于字符串的范畴。Python内置了很多处理字符串的方法,这些方法为我们处理和清洗数据提供了很大的便利。
对于管理者来说,日报是事前管理的最好抓手,可以了解团队的氛围和状态。可对于员工来说,那就有的聊了。对于重复性的工作,我非常推荐大家使用Python将其变成模块化、自动化,帮助我们实现高效办公。
其实我觉得蛮简单,核心就是你组装好日报的内容模板,然后将变化的量交给python去填充,需要用到的基本就是python处理excel、word和ppt等相关的库。熟练的使用它们,你就可以自动化一条龙了。
在实际的数据分析和处理中,常常需要将多个数据集进行合并和连接,以便进行更全面、准确的数据分析。Python 提供了丰富的工具和库,使得数据合并与连接操作变得简单高效。下面将介绍 Python 中常见的数据合并和连接方法,包括合并数据框、连接数据框、堆叠数据和拼接数据等。
本文围绕 Stata 与 Python 的对照与交互,适合有 Stata 基础,想过渡学习 Python 的读者。其中,Python 数据管理主要使用的 Pandas 库。本文主要包括两部分:
导读:Pandas是Python数据分析的利器,也是各种数据建模的标准工具。本文带大家入门Pandas,将介绍Python语言、Python数据生态和Pandas的一些基本功能。
本文涉及pandas最常用的36个函数,通过这些函数介绍如何完成数据生成和导入、数据清洗、预处理,以及最常见的数据分类,数据筛选,分类汇总,透视等最常见的操作。
在本教程的这一部分中,我们将研究如何加速在 pandas 的DataFrame上操作的某些函数,使用 Cython、Numba 和pandas.eval()。通常,使用 Cython 和 Numba 可以比使用pandas.eval()提供更大的加速,但需要更多的代码。
在开始正题之前,先介绍一下它所属的系列。该系列叫 AOSA,是“The Architecture of Open Source Applications”的简称,即“开源程序的体系结构”,目前有四本书,本期主角是最近的一本(发布于 2016.7.12)。
我在保险行业工作,每天处理大量数据。有一次,我受命将多个Excel文件合并到一个“主电子表格”中。每个Excel文件都有不同的保险单数据字段,如保单编号、年龄、性别、投保金额等。这些文件有一个共同的列,即保单ID。在过去,我只会使用Excel和VLOOKUP公式,或者Power Query的合并数据函数。这些工具工作得很好,然而,当我们需要处理大型数据集时,它们就成了一种负担。
在『Pandas进阶修炼120题』系列中,我们将对pandas中常用的操作以习题的形式发布。从读取数据到高级操作全部包含。如果你是新手,可以通过本系列完整学习使用pandas进行数据处理的各种方法,如果你是高手,欢迎留言给出与答案的不同解法。本期先来20题热身吧!
小伙伴你好,在开始操作 Excel 之前,你需要安装 Python 和一些相关库。可以使用 pip 安装以下库,或者使用专业的 python 客户端:pycharm,快速安装 python 和相关库。
如果你平常做数据分析用 Excel,想要用 Python 做还不太会?那这篇系统的文章一定能帮到你!建议先收藏后食用
今天这篇跟大家介绍R语言与Python数据处理中的第二个小知识点——数据合并与追加。 针对数据合并与追加,R与Python中都有对应的函数可以快速完成需求,根据合并与追加的使用场景,这里我将本文内容分成三部分: 数据合并(简单合并,无需匹配) 数据合并(匹配合并) 数据追加 数据合并(简单合并,无需匹配) 针对简单合并而言,在R语言中主要通过以下两个函数来实现: cbind() dplyr::bind_cols() df1 <- data.frame(A=c('A0', 'A1', 'A2', 'A3'),
我们将使用 drop() 方法从任何 csv 文件中删除该行。在本教程中,我们将说明三个示例,使用相同的方法从 csv 文件中删除行。在本教程结束时,您将熟悉该概念,并能够从任何 csv 文件中删除该行。
今天刷Leetcode的时候,对整数进行翻转,由于Python的除法是向下取整,因此要对输入整数进行正负的判断,当时想到的是使用三目运算,但是看参考答案的时候,发现使用的是逻辑运算符进行正负数的判断,当时一脸懵逼,经过查找相关资料理解了原理,故此做个记录。
我的机器学习教程「美团」算法工程师带你入门机器学习 已经开始更新了,欢迎大家订阅~
Python可视化数据分析09、Pandas_MySQL读写 📋前言📋 💝博客:【红目香薰的博客_CSDN博客-计算机理论,2022年蓝桥杯,MySQL领域博主】💝 ✍本文由在下【红目香薰】原创,首发于CSDN✍ 🤗2022年最大愿望:【服务百万技术人次】🤗 💝Python初始环境地址:【Python可视化数据分析01、python环境搭建】💝 ---- 环境需求 环境:win10 开发工具:PyCharm Community Edition 2021.2 数据库:MySQL5
以上就是python数据变换的实现,希望对大家有所帮助。更多Python学习指路:python基础教程
前几天在Python最强王者交流群【东哥】问了一个Python自动化办公的问题。问题如下所示:大佬们,请教一个Python自动化办公问题,我有7个这样的民主评议表格,现在想通过Python批量的计算每个人最后的平均总分,应该怎么处理呢?
才开通星空问答,就收到了小几个问题,试着回答了,不知道满不满意,相信随着水平的增长,会让大家更加满意的。相关链接>>>Excel与VBA,还有相关的Python,到这里来问我
本文利用Python对Amazon产品的反馈对数据文本进行探索性研究与分析,并给出结论。
个人比较喜欢用Python里面的exec(),可以用来动态执行字符串代码,在for循环里面能快速执行大量类似于list1= 1,list2=2,list3=3..这样的语句,使代码显得更加简洁。
在当今数据驱动的时代,数据分析已成为各行各业不可或缺的一部分。Python,作为一门功能强大、易于学习且拥有丰富库支持的编程语言,在数据分析领域占据了举足轻重的地位。本文将带您走进Python数据分析的世界,从初体验到深入介绍,并结合实际代码操作,让您快速上手并感受Python在数据分析中的魅力。
前几天在Python奥特曼交流群【。。】问了一个Python面试题的问题,一起来看看吧,图片代码分享版本在这个文章,盘点一个Python面试编程题(Python应用实战)(文末赠书),在里边也可以拿到原始的需求数据。这里应粉丝的要求,分享一个代码版本,手残党福利来了!
前几天在小小明大佬的Python交流群中遇到一个粉丝问了一个使用Python实现Excel数理统计的实战问题,觉得还挺有用的,这里拿出来跟大家一起分享下。
江湖上流传着这么一句话——分析不识潘大师(PANDAS),纵是老手也枉然。 Pandas是基于Numpy的专业数据分析工具,可以灵活高效的处理各种数据集,也是我们后期分析案例的神器。它提供了两种类型的数据结构,分别是DataFrame和Series,我们可以简单粗暴的把DataFrame理解为Excel里面的一张表,而Series就是表中的某一列,后面学习和用到的所有Pandas骚操作,都是基于这些表和列进行的操作(关于Pandas和Excel的形象关系,这里推荐我的好朋友张俊红写的《对比EXCEL,轻松学习Python数据分析》)。 这里有一点需要强调,Pandas和Excel、SQL相比,只是调用和处理数据的方式变了,核心都是对源数据进行一系列的处理,在正式处理之前,更重要的是谋定而后动,明确分析的意义,理清分析思路之后再处理和分析数据,往往事半功倍。
Python可视化数据分析08、Pandas_Excel文件读写 📋前言📋 💝博客:【红目香薰的博客_CSDN博客-计算机理论,2022年蓝桥杯,MySQL领域博主】💝 ✍本文由在下【红目香薰】原创,首发于CSDN✍ 🤗2022年最大愿望:【服务百万技术人次】🤗 💝Python初始环境地址:【Python可视化数据分析01、python环境搭建】💝 ---- 环境需求 环境:win10 开发工具:PyCharm Community Edition 2021.2 数据库:MySQ
所有编程语言都离不开循环。因此,默认情况下,只要有重复操作,我们就会开始执行循环。但是当我们处理大量迭代(数百万/十亿行)时,使用循环是一种犯罪。您可能会被困几个小时,后来才意识到它行不通。这就是在 python 中实现矢量化变得非常关键的地方。
文章来源:www.jianshu.com/p/9bc9f473dd22 推荐阅读:终于来了,【第二期】 彭涛Python 爬虫特训营!! 在以前,商业分析对应的英文单词是Business Analysis,大家用的分析工具是Excel,后来数据量大了,Excel应付不过来了(Excel最大支持行数为1048576行),人们开始转向python和R这样的分析工具了,这时候商业分析对应的单词是Business Analytics。 其实python和Excel的使用准则一样,都是[We don't repeat
今天我想和大家分享一下关于爬虫数据的整理与处理的技巧,并介绍一些Python爬虫的实践经验。如果你正在进行数据工作,那么整理和处理数据是无法避免的一项工作。那么就让让我们一起来学习一些实际操作的技巧,提升数据处理的效率和准确性吧!
如果待排序的书数据中存在缺失值,通过设置参数na_position对缺失值的显示位置进行设置
在之前我们详细讲解过如何使用Python自动更新Excel表格并调整样式,在上次的自动化案例中要求两个或多个Excel表格数据要匹配/对称才能够自动更新,今天我们再次来解决在数据不对称的情况下如何自动更新表格,这是更常见的情况,也是我遇到的一个具体需求。
在数据处理和分析过程中,经常会遇到数据中存在缺失值的情况。合理处理缺失值能够帮助我们完善数据质量,提高建模和分析的准确性。下面将介绍 Python 中常用的数据填充和缺失值处理方法,包括删除缺失值、插值法和回归方法等,以及如何选择合适的方法来处理不同类型的缺失值。
大数据文摘作品,转载要求见文末 作者 | Conor Dewey 编译 | 糖竹子,徐凌霄,Aileen 导读:半路出山想迅速上手Python做机器学习?这篇文章就是你需要的实用指南。 毋庸置疑,近来机器学习人气日益高涨,逐渐在流行词榜单上占据一席之地。机器学习算法繁多,到底该选择哪一种处理相关数据是困扰很多学习者的问题。本文将以一种清晰简明的方式,解释并实践最常见的几种机器学习算法。 接下来,我们将罗列8种最常见火爆的机器学习算法,通过Python,将它们分别适用同一个经典数据集Iris(线性回归和逻辑
前几天在Python星耀交流群有个叫【iLost】的粉丝问了一个关于使用pandas解决两列数据对比的问题,这里拿出来给大家分享下,一起学习。
在我们日常接触到的Python中,狭义的缺失值一般指DataFrame中的NaN。广义的话,可以分为三种。
在这篇文章中,我要谈的东西是相对简单,但却是对任何业务都很重要的:客户细分。客户细分的核心是能够识别不同类型的客户,然后知道如何找到更多这样的人,这样你就可以…你猜对了,获得更多的客户!在这篇文章中,我将详细介绍您如何可以使用K-均值聚类来完成一些客户细分方面的探索。
以上就是Python DataFrame根据列值选择行的方法,希望对大家有所帮助。
相信各位同学多多少少在拉钩上投过简历,今天突然想了解一下北京Python开发的薪资水平、招聘要求、福利待遇以及公司地理位置。既然要分析那必然是现有数据样本。本文通过爬虫和数据分析为大家展示一下北京Python开发的现状,希望能够在职业规划方面帮助到大家!!!
Github地址:https://github.com/jmcarpenter2/swifter
import pandas as pd df = pd.read_csv("test.csv") df.sample(10)
领取专属 10元无门槛券
手把手带您无忧上云