/usr/lib/python2.7/site-packages/pyPdf/generic.py
中文分句,乍一看是一个挺简单的工作,一般我们只要找到一个【。!?】这类的典型断句符断开就可以了吗。 对于简单的文本这个做法是已经可行了(比如我看到这篇文章里有个简洁的实现方法
中文分句,乍一看是一个挺简单的工作,一般我们只要找到一个【。!?】这类的典型断句符断开就可以了吗。 对于简单的文本这个做法是已经可行了,然而当我处理小说文本时,发现了这种思路的漏洞:
TextBlob 是一款 Pythonic 的文本处理工具,用于处理文本数据,它提供了一个简单的 API,用于潜入常见的自然语言处理(NLP)任务,如词性标注、名词短语提取、情感分析、分类等
如果你经常与Excel或Word打交道,那么从两份表格/文档中找到不一样的元素是一件让人很头疼的工作,当然网上有很多方法、第三方软件教你如何对比两份文件。本文就将以两份真实的Excel/Word文件为例,讲解如何使用Python光速对比并提取文件中的不同之处!
一、异常基础 1、基础 try/except/else:【else是可选的】捕捉由代码中的异常并恢复,匹配except里面的错误,并执行except中定义的代码,后继续执行程序(发生异常后,由except捕捉到异常后,不会中断程序,继续执行try语句后面的程序) try首行底下的代码块代表此语句的主要动作:试着执行的程序代码。except分句定义try代码块内引发的异常处理器,而else分句(如果有)则是提供没有发生异常时候要执行的处理器。 try/finally: 无论异常是否发生,都执行清理行为 (发生异常时程序会中断程序,只不过会执行finally后的代码) raise: 手动在代码中接触发异常。 assert: 有条件地在程序代码中触发异常。 assert几乎都是用来收集用户定义的约束条件 with/as 在Python2.6和后续版本中实现环境管理器。 用户定义的异常要写成类的实例,而不是字符串、。 finally可以和except和else分句出现在相同的try语句内、 扩展 try/except/finally 可以在同一个try语句内混合except和finally分句:finally一定回执行,无论是否有异常引发,而且不也不管异常是否被except分句捕捉到。finally有没有异常都执行 try/except/else: except捕捉到对应的异常才执行。else 没有异常才执行、 也就是说except分句会捕捉try代码块执行时所有发生的任何异常,而else分句只在try代码执行没有发生异常时才执行,finally分句无法释放发生异常都执行。 2、try语句分句形式 分句形式 说明 except: 捕捉所有(其他)异常类型 except name: 只捕捉特定的异常 except name,value: 捕捉所有的异常和其额外的数据(或实例) except (name1,name2) 捕捉任何列出的异常 except (name1,name2),value: 捕捉任何列出的异常,并取得其额外数据 else: 如果没有引发异常,就运行 finally: 总是会运行此代码块,无论是否发生异常 空的except分句会捕捉任何程序执行时所引发的而未被捕捉到的异常。要取得发生的实际异常,可以从内置的 sys模块取出sys.exc_info函数的调用结果。这会返回一个元组,而元组之前两个元素会自动包含当前异常的名称, 以及相关的额外数据(如果有)。就基于类的异常而言,这两个元素分别对应的是异常的类以及引发类的实例。 sys.exc_info结果是获得最近引发的异常更好的方式。如果没有处理器正在处理,就返回包含了三个None值的元组。 否则,将会返回(type,value和traceback) *type是正在处理的异常的异常类型(一个基于类的异常的类对象) *value是异常参数(它的关联值或raise的第二个参数,如果异常类型为类对象,就一定是类实例) *traceback是一个traceback对象,代表异常最初发生时所调用的堆栈。 3、try/else分句 不要将else中的代码放入try:中。保证except处理器只会因为包装在try中代码真正的失败而执行,而不是为else中的情况行为失败而执行。 else分句,让逻辑封明确 4、try/finally分句 python先运行try: 下的代码块: 如果try代码块运行时没有异常发生,Python会跳至finally代码块。然后整个try语句后继续执行下去。 如果try代码块运行时有发生异常,Python依然会回来运行finally代码块,但是接着会把异常向上传递到较高的try语句或顶层的默认处理器。程序不会在try语句继续执行。 try: Uppercase(open('/etc/rc.conf'),output).process() finally: open('/etc/rc.conf').close 5、统一try/except/finally分句 2.5版本后可统一(包括2.5版本) try: main-action: except Exception1: hander1 except Exception2: hander2 ... else: else-block finally: finally-block 这语句中main-action代码会先执行。如果该程序代码(m
摘要: 要进行自然语言处理相关工作,文本数据预处理是个必不可少的过程。本文将对文本数据预处理相关的内容进行归纳整理,主要包括以下4个方面内容:
情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪。 原理 比如这么一句话:“这手机的画面极好,操作也比较流畅。不过拍照真的太烂了!系统也不好。” ① 情感词 要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等。出现一个积极词就+1,出现一个消极词就-1。 里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词。那它的情感分值就是1+1-1+1=2. 很明显这个分
【导语】此文是作者基于 Python 构建知识图谱的系列实践教程,具有一定创新性和实用性。文章前半部分内容先介绍哈工大 pytltp 工具,包括安装过程、中文分词、词性标注和实体识别的一些基本用法;后半部分内容讲解词性标注、实体识别、依存句法分析和语义角色标注及代码实现。
pyltp 是 LTP 的 Python 封装,提供了分词,词性标注,命名实体识别,依存句法分析,语义角色标注的功能。
一、异常基础 try/except:捕捉由代码中的异常并恢复,匹配except里面的错误,并自行except中定义的代码,后继续执行程序(发生异常后,由except捕捉到异常后,不会中断程序,继续执行try语句后面的程序) try/finally: 无论异常是否发生,都执行清理行为 (发生异常时程序会中断程序,只不过会执行finally后的代码) raise: 手动在代码中接触发异常。 assert: 有条件地在程序代码中触发异常。 with/as 在Python2.6和后续版本中实现环境管理器。 用户定义的异常要写成类的实例,而不是字符串、。 finally可以和except和else分句出现在相同的try语句内、 1、异常的角色 错误处理 事件通知 特殊情况处理:有时发生很罕见的情况,很难调整代码去处理。通常会在异常处理器中处理这些罕见的情况,从而省去编写应对特殊情况的代码 终止行为 非常规控制流程 >>> x='diege >>> def fetcher(obj,index): ... return obj[index] ... >>> fetcher(x,4) 'e' >>> fetcher(x,5) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<stdin>", line 2, in fetcher IndexError: string index out of range >>> try: ... fetcher(x,5) #尝试抓取第5个字符 ... except IndexError: #如果发生异常【指出引发的异常名称】 ... print fetcher(x,-1) #那就抓取最后一个字符 ... e >>> def catcher(): ... try: ... fetcher(x,5) ... except IndexError: ... print fetcher(x,-1) ... print "continuing" ... >>> catcher() e continuing 可以看到从异常中恢复并继续执行。 try/finally: 无论异常是否发生,都执行清理行为(发生异常时程序也会终端,只不过会执行finally后的代码) >>> try: ... fetcher(x,4) ... finally: ... print 'after fetch' ... 'e' after fetch 没有发生异常的情况,也执行finally语句中的代码 发生异常的情况下 >>> try: ... fetcher(x,5) ... finally: ... print 'after fetch' ... after fetch Traceback (most recent call last): File "<stdin>", line 2, in <module> File "<stdin>", line 2, in fetcher IndexError: string index out of range 发生异常的情况下,也执行了finally语句中的代码 实际应用镇南关,try/except的组合可用于捕捉异常并从中恢复,而try/finally的组合则很方便,可以确保无论try代码块内的 代码是否发生异常,终止行为一定会运行。如,try/except来捕捉第三方库导入的代码所引发的错误,然后以try/finally来确保 关闭文件,或者终止服务器连接等调用。 可以在同一个try语句内混合except和finally分句:finally一定回执行,无论是否有异常引发,而且不也不关异常是否被except分句捕捉到 2、try/except/else语句 try的完×××式:try/多个except/else语句 else是可选的 try首行底下的代码块代表此语句的主要动作:试着执行的程序代码。except分句定义try代码块内引发的异常处理器,而else分句(如果有)则是提供没有发生异常时候要执行的处理器。 *如果try代码块语句执行时发生了异常,Python就跳回try,执行第一个符合引发的异常的except分句下面的语句。当except代码执行后(除非 except代码块引发另一异常),控制全就会到整个try
LTP(Language Technology Platform)中文为语言技术平台,是哈工大社会计算与信息检索研究中心开发的一整套中文语言处理系统。
情感分析指的是对新闻报道、商品评论、电影影评等文本信息进行观点提取、主题分析、情感挖掘。情感分析常用于对某一篇新闻报道积极消极分析、淘宝商品评论情感打分、股评情感分析、电影评论情感挖掘。情感分析的内容包括:情感的持有者分析、态度持有者分析、态度类型分析(一系列类型如喜欢(like),讨厌(hate),珍视(value),渴望(desire)等;或着简单的加权极性如积极(positive),消极(negative)和中性(neutral)并可用具体的权重修饰)、态度的范围分析(包含每句话,某一段、或者全文)。因此,情感分析的目的可以分为:初级:文章的整体感情是积极/消极的;进阶:对文章的态度从1-5打分;高级:检测态度的目标,持有者和类型。
目前,在NLP任务处理中,Python支持英文处理的开源包有NLTK、Scapy、StanfordCoreNLP、GATE、OPenNLP,支持中文处理的开源工具包有Jieba、ICTCLAS、THU LAC、HIT LTP,但是这些工具大部分仅对特定类型的语言提供支持。本文将介绍功能强大的支持Pipeline方式的多语言处理Python工具包:polyglot。该项目最早是由AboSamoor在2015年3月16日在GitHub上开源的项目,已经在Github收集star 1021个。
本文探讨了利用余弦相似度算法实现文章自动摘要的方法,该方法通过对文章分句并计算余弦相似度,从而找出与目标文章最相似的句子作为摘要。首先介绍了余弦相似度的计算原理和实现方法,然后通过具体的示例展示了如何对给定的文章进行分句和计算余弦相似度,最后对实现过程进行了总结和展望。
上节课我们介绍了基于SnowNLP快速进行评论数据情感分析的方法,本节课老shi将介绍基于情感词典的分析方法。基于情感词典的分析方法是情感挖掘分析方法中的一种,其普遍做法是:首先对文本进行情感词匹配,然后汇总情感词进行评分,最后得到文本的情感倾向。目前使用较多的情感词典主要有两种:一种是BosonNLP情感词典,另一种是知网推出的情感词典。
该项目实现的诗歌接龙,规则为下一句的首字与上一句的尾字的拼音(包括声调)一致。下面将分步讲述该项目的实现过程。
作者: jclian,本人从事Python已一年多,是Python爱好者,喜欢算法,热爱分享,希望能结交更多志同道合的朋友,一起在学习Python的道路上走得更远!
本文记录自然语言基础技术之语义角色标注学习过程,包括定义、常见方法、例子、以及相关评测,最后推荐python实战利器,并且包括工具的用法。
我最近开始重新开发我的“健康笔记”应用程序。由于新版本将只支持 iOS 17 及以上版本的设备,这让我在选择技术路线上享有更大的自由。
CSDN:白马负金羁 自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。自然语言工具箱(NLTK,Natural Language Toolkit)是一个基于Python (http://lib.csdn.net/base/11)语言的类库,它也是当前最为流行的自然语言编程与开发工具。在进行自然语言处理研究和应用时,恰当利用NLTK中提供的函数可以大幅度地提高效率。本文就将通过一些实例来向读者介绍NLTK的使用。 开发环境:我所使用的Python版本是最新的3.5.1,NLTK版本是3.2。P
先来看看语义角色标注在维基百科上的定义:Semantic role labeling, sometimes also called shallow semantic parsing, is a process in natural language processing that assigns labels to words or phrases in a sentence that indicate their semantic role in the sentence, such as that of an agent, goal, or result. It consists of the detection of the semantic arguments associated with the predicate or verb of a sentence and their classification into their specific roles.
结构化查询语言(SQL)是数据挖掘分析行业不可或缺的一项技能,总的来说,学习这个技能是比较容易的。对于SQL来说,编写查询语句只是第一步,确保查询语句高效并且适合于你的数据库操作工作,才是最重要的。这个教程将会提供给你一些步骤,来评估你的查询语句。
注意,下面的路径是我个人下载文件的路径,详细参见https://github.com/Lynten/stanford-corenlp
步骤一:构建一个人工智能模型才能让机器学会像人一样说话,在这里,使用python语言编写脚本,基于堆叠Transformer(神经网络中一个模块,使用自注意力机制用来实现句子中词和词的关联性)的解码器模块构建的GPT-2模型,采用了BERT的分词器(划分句子里面的词语)构建了一个大型的深度学习模型。
作者:nlp初学者小吴 (清华大学) 已获授权 链接:https://zhuanlan.zhihu.com/p/565282216 编辑:深度学习自然语言处理 公众号 句法(Syntactic)分析是NLP的经典任务 Syntactic tasks: Word level Word level的句法分析任务有:形态分析、分词、序列标注 形态分析:Morphological analysis,指将一个词的词根(stem)和词缀(prefix & suffix)提取出来的任务 分词:Word segmentat
这里主要总结一下在python环境下进行自然语言处理的相关包和可能会出现的相关错误,目前接触的都比较Low,但是还是想要记录下来。
转载自:Python中文社区 ID:python-china 最近在了解到,在机器学习中,自然语言处理是较大的一个分支。存在许多挑战。例如: 如何分词,识别实体关系,实体间关系,关系网络展示等
專 欄 ❈Jerry,Python中文社区专栏作者。 blog:https://my.oschina.net/jhao104/blog github:https://github.com/jhao104 ❈ 本文简要介绍Python自然语言处理(NLP),使用Python的NLTK库。NLTK是Python的自然语言处理工具包,在NLP领域中,最常使用的一个Python库。 什么是NLP? 简单来说,自然语言处理(NLP)就是开发能够理解人类语言的应用程序或服务。 这里讨论一些自然语言处理(NLP)
导语 | 网页摘要计算,术语是 snippet computing/highlight computing。用户在输入框输入的关键词命中相关网页(ES 中的文档)后,需要根据关键词以及打分模型从网页内容筛选出 top N 的语句组成短文返回给前端手机用户,关键词红色高亮。笔者小组负责网页摘要高亮计算,本文将从模型优化及工程演变角度,还原 ES 在网页摘要技术中的应用实践。文章作者:魏征,CSIG 智慧零售数据中心大数据工程师。 一、项目背景 通用搜索引擎,细分模块包括网页搜索、图片搜索、视频搜索、新闻搜索
文本情感分析系统,使用Python作为开发语言,基于文本数据集,使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
结构化查询语言(SQL)是数据挖掘分析行业不可或缺的一项技能,总的来说,学习这个技能是比较容易的。对于SQL来说,编写查询语句只是第一步,确保查询语句高效并且适合于你的数据库操作工作,才是最重要的。这个教程将会提供给你一些步骤,来评估你的查询语句。 首先,应该了解学习SQL对于数据挖掘分析这个工作的重要性; 接下来,应该先学习SQL查询语句的处理和执行过程,以便可以更好的了解到,编写高质量的查询有多重要。具体说来就是,应该了解查询是如何被解析、重写、优化和最终评估的; 掌握了上面一点之后,你不仅需要重温初学
导语 | 网页摘要计算,术语是 snippet computing/highlight computing。用户在输入框输入的关键词命中相关网页(ES 中的文档)后,需要根据关键词以及打分模型从网页内容筛选出 top N 的语句组成短文返回给前端手机用户,关键词红色高亮。笔者小组负责网页摘要高亮计算,本文将从模型优化及工程演变角度,还原 ES 在网页摘要技术中的应用实践。
一.Python的运行时错误称作异常 语法错误:软件的结构上有错误而导致不能被解释器解释或不能被编译器编译 逻辑错误:由于不完整或不合法的输入所致,也可能是逻辑无法生成、计算或者输出结果需要的过程无法执行等 Python异常是一个对象,表示错误或意外情况 Python检测到一个错误时,将触发一个异常 1.Python可以通过异常传道机制传递一个异常对象,发出一个一场情况出现的信号 2.程序员也可以在代码中手动触发异常 Python异常也可以理解为:程序出现了错误而在正常控制意外采取的行为 第一阶段:解释
python异常: python在运行时错误称为异常 语法错误:软件的结构上有错误而导致不能被解释器解释或不能被编译器编译。 逻辑错误:由于不完整或不合法的输入所致,也可能是逻辑无法生成、计算或者出结果需要的过程无法执行等。 默认情况下:python脚本执行过程中出现异常后,脚本执行将被终止。 python 异常是一个对象,表示错误或意外的情况 在python检测到一个错误时,将触发一个异常: python可以通过异常传导机制传递一个异常对象,发出一个异常情况出现的信号。 程序员也可以在代码中托运触发异常 python异常也可以理解为:程序出现了错误,而在正常控制流以外采取的行为 第一阶段:解释器触发异常,此时当前程序流将被打断。 第二阶段:异常处理,如忽略非致命错误、减轻错误带来的影响等。 异常的功用 错误处理: python的默认处理:停止程序,打印错误消息 使用try语句处理异常,并从异常中恢复 事件通知: 用于发出有效状态信号 特殊情况处理: 无法调整代码去处理的场景 终止行为: try/finally语句可确保执行必需的结束处理机制 非常规控制流程: 异常是一种高级跳转(goto)机制 异常对象 python异常是内置的经典类exception的子类的实例 为了向后兼容,python还允许使用字符串或任何经典类实例 python2.5之后,exception是从BaseException继承的新式类(即exception的父类是BaseException类) python自身引发的所有异常都是Exception的子类的实例 大多的标准异常都是由StandardError派生的,其有3个抽象的子类 ArithmeticError:由于算术错误而引发的异常基类;包括:OverflowError、ZeroDivisionError、FloatingPorintError LookupError:容器在接收到一个无效的键或索引时引发的异常的基类;包括:IndexError、KeyError EnvironmentError:由于外部原因而导致的异常的基类;包括:IOError、OSError、WindowsError 标准异常类 AssertionError:断言语句失败 AttributeError:属性引用或赋值失败 FloatingPointError:浮点型运算失败 IOError:I/O操作失败 ImportError:import语句不能找到要导入的模块,或者不能找到该模块特别请求的名称。 IndentationError:解析器遇到了一个由于错误的缩进而引发的语法错误 IndexError:用来索引序列的整数超出了范围。 KeyError:用来索引映射的键不在映射中 KeyboardInterrupt:用户按了中断键(ctrl+c、ctrl+break、delete键) MemoryError:运算耗尽内存 NameError:引用了一个不存在的变量名 NotImplementedError:由抽象基类引发的异常,用于指示一个具体的子类必须覆盖一个方法 OSError:由模块os中的函数引发的异常,用来指示平台相关的错误 OverflowError:整数运算的结果太大导致溢出 SyntaxError:语法错误 SystemError:python解释器本身或某些扩展模块中的内部错误 TypeError:对某对象执行了不支持的操作 UnboundLocalError:引用未绑定值的本地变量 UnicodeError:在Unicode的字符串之间进行转换时发生的错误 ValueError:应用于某个对象的操作或函数,这个对象具有正确的类型,但确有不适当的值 WindowsError:模块OS中的函数引发的异常,用于指示与windowsSHUDR QAYK ZeroDivisionError:除数为0引发的异常 检测和处理异常: 异常通过try语句来检测:任何在try语句块中的代码都会被监测,以检查有无异常发生。 tr语句主要有两种形式: try-except:检测和处理异常 可以有多个e
Doctest模块允许在文档字符串内嵌入注释以显示各种语句的期望行为,尤其是函数和方法的结构;此处的文档字符串看起来如同一个交互式shell会话;可用于测试文档是否与主程序保持同步,或基于文档对程序本身做测试。
1.from stanfordcorenlp import StanfordCoreNLP
google 近期发布了颠覆性的NLP模型–BERT ,大家有空可以了解一下, 这是张俊林博士写的科普文章: https://mp.weixin.qq.com/s/EPEsVzbkOdz9GovrAM-p7g
最近在了解到,在机器学习中,自然语言处理是较大的一个分支。存在许多挑战。例如: 如何分词,识别实体关系,实体间关系,关系网络展示等。
本文介绍了自然语言处理中成分句法分析,包括定义、基本任务、常见方法以及短语结构和依存结构的关系,最后,分享了一些流行的工具以及工具实战例子。
原理我就不讲了,请移步下面这篇论文,包括情感词典的构建(各位读者可以根据自己的需求稍作简化),以及打分策略(程序对原论文稍有改动)。
最近看了一下小说推文成品软件的思路,发现可以完全迁移到我的 BookerAutoVideo 上面来。这篇短文里面,我试着分析一下整个推文视频生成的流程,以及简要阐述一下有什么工具。
上周看到别的实验室学姐发来的研究生毕业要求。其中 Master Degree 的要求是 3 篇会议论文或者 1 篇杂志论文。对于目前的我来说,这个要求有点高,因为我的英文水平和韩文水平都很渣。最后决定还是用英文来写论文比较好。想要提升英文写作水平,这是个长久战,是个日积月累的过程。我选择在 Coursera 上报了这门课程来辅助学习,感兴趣的可以戳这:Academic English: Writing 专项课程
RAKE英文全称为Rapid Automatic keyword extraction,中文称为快速自动关键字提取,是一种非常高效的关键字提取算法,可对单个文档进行操作,以实现对动态集合的应用,也可非常轻松地应用于新域,并且在处理多种类型的文档时也非常有效。
【新智元导读】目前最好的语音识别系统采用双向长短时记忆网络(LSTM,LongShort Term Memory),但是,这一系统存在训练复杂度高、解码时延高的问题,尤其在工业界的实时识别系统中很难应用。科大讯飞在今年提出了一种全新的语音识别框架——深度全序列卷积神经网络(DFCNN,Deep Fully Convolutional NeuralNetwork),更适合工业应用。本文是对科大讯飞使用DFCNN应用于语音转写技术的详细解读,其外还包含了语音转写中口语化和篇章级语言模型处理、噪声和远场识别和文本
导读:目前最好的语音识别系统采用双向长短时记忆网络(LSTM,LongShort Term Memory),但是,这一系统存在训练复杂度高、解码时延高的问题,尤其在工业界的实时识别系统中很难应用。科大讯飞在今年提出了一种全新的语音识别框架——深度全序列卷积神经网络(DFCNN,Deep Fully Convolutional NeuralNetwork),更适合工业应用。本文是对科大讯飞使用DFCNN应用于语音转写技术的详细解读,其外还包含了语音转写中口语化和篇章级语言模型处理、噪声和远场识别和文本处理实时
AI 科技评论按,本文作者韦阳,本文首发于知乎专栏自然语言处理与深度学习,AI 科技评论获其授权转载。
NLP研究的是实现人与计算机之间用自然语言进行有效沟通的各种理论与方法。本文整理了NLP领域常用的16个术语,希望可以帮助大家更好地理解这门学科。
前几天在Python最强王者群有个叫【老松鼠】的粉丝问了一道关于字符串处理问题,如下图所示。
领取专属 10元无门槛券
手把手带您无忧上云