机器学习 - 精度评价
Python sklearn.metrics 提供了很多任务的评价指标,如分类任务的混淆矩阵、平均分类精度、每类分类精度、总体分类精度、F1-score 等;以及回归任务、聚类任务等多种内置函数...分类 - 混淆矩阵 Confusion Matrix
sklearn.metrics.confusion_matrix
from sklearn.metrics import confusion_matrix...image.png
C = confusion_matrix(gt_labels, pred_labels, labels=None, sample_weight=None)[source]
# C...gt_labels = [2, 0, 2, 2, 0, 1]
pred_labels = [0, 0, 2, 2, 0, 2]
confusion_matrix(gt_labels, pred_labels...tn, fp, fn, tp = confusion_matrix([0, 1, 0, 1], [1, 1, 1, 0]).ravel()
#(tn, fp, fn, tp)
#(0, 2, 1, 1