首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

python Pandas过滤列名中包含特定子字符串的列

Pandas是一个基于Python的数据分析库,提供了丰富的数据结构和数据分析工具。在使用Pandas进行数据处理时,有时需要根据列名中是否包含特定子字符串来过滤列。下面是完善且全面的答案:

Pandas过滤列名中包含特定子字符串的列,可以使用filter()函数结合正则表达式来实现。具体步骤如下:

  1. 导入Pandas库:
代码语言:txt
复制
import pandas as pd
  1. 创建一个DataFrame对象,用于存储数据:
代码语言:txt
复制
data = {'col1': [1, 2, 3], 'col2': [4, 5, 6], 'col3': [7, 8, 9]}
df = pd.DataFrame(data)
  1. 使用filter()函数过滤列名中包含特定子字符串的列:
代码语言:txt
复制
filtered_columns = df.filter(regex='substring')

其中,regex参数接受一个正则表达式,用于匹配列名中的子字符串。可以使用正则表达式的元字符和模式来灵活匹配不同的子字符串。

  1. 打印过滤后的列:
代码语言:txt
复制
print(filtered_columns)

完整的代码示例如下:

代码语言:txt
复制
import pandas as pd

data = {'col1': [1, 2, 3], 'col2': [4, 5, 6], 'col3': [7, 8, 9]}
df = pd.DataFrame(data)

filtered_columns = df.filter(regex='substring')
print(filtered_columns)

这样就可以根据特定的子字符串过滤出包含该子字符串的列。

Pandas的优势在于其强大的数据处理和分析能力,可以方便地进行数据清洗、转换、合并等操作。它提供了丰富的函数和方法,使得数据处理变得简单高效。同时,Pandas还与其他Python库(如NumPy、Matplotlib等)结合使用,可以进行更加复杂的数据分析和可视化。

Pandas适用于各种数据处理场景,包括数据清洗、数据转换、数据分析、数据可视化等。它可以处理结构化数据、时间序列数据等各种类型的数据。在金融、科学研究、商业分析等领域都有广泛的应用。

腾讯云提供了云服务器、云数据库、云存储等多种云计算产品,可以满足不同场景下的需求。在使用Pandas进行数据处理时,可以结合腾讯云的云服务器和云数据库等产品,实现数据的存储和计算的分离,提高数据处理的效率和可靠性。

腾讯云产品推荐:

  • 云服务器(ECS):提供弹性计算能力,支持多种操作系统和应用场景。产品介绍链接
  • 云数据库MySQL版(CDB):提供稳定可靠的关系型数据库服务,支持高可用、备份恢复等功能。产品介绍链接
  • 云对象存储(COS):提供安全可靠的对象存储服务,适用于存储和处理各种类型的数据。产品介绍链接

以上是关于Python Pandas过滤列名中包含特定子字符串的列的完善且全面的答案。

页面内容是否对你有帮助?
有帮助
没帮助

相关·内容

Python判断字符串是否包含定子7种方法

---- 在写代码过程,我们经常会遇到这样一个需求:判断字符串是否包含某个关键词,也就是特定字符串。比如从一堆书籍名称找出含有“python书名。...判断两个字符串相等很简单,直接 == 就可以了。其实判断包含子串也非常容易,而且还不止一种方法。..., python" False 2、使用 find 方法 使用 字符串 对象 find 方法,如果有找到子串,就可以返回指定子串在字符串出现位置,如果没有找到,就返回-1 >>> "hello,...= -1 False >> 3、使用 index 方法 字符串对象有一个 index 方法,可以返回指定子串在该字符串第一次出现索引,如果没有找到会抛出异常,因此使用时需要注意捕获。...对于判断字符串是否存在于另一个字符串这个需求,使用正则简直就是大材小用。

209.6K53

5个例子学会Pandas字符串过滤

在本文中,我介绍将学习 5 种可用于过滤文本数据(即字符串不同方法: 是否包含一系列字符 求字符串长度 判断以特定字符序列开始或结束 判断字符为数字或字母数字 查找特定字符序列出现次数 首先我们导入库和数据...import pandas as pd df = pd.read_csv("example.csv") df 我们这个样例DataFrame 包含 6 行和 4 。...我们将使用不同方法来处理 DataFrame 行。第一个过滤操作是检查字符串是否包含特定单词或字符序列,使用 contains 方法查找描述字段包含“used car”行。...例如,我们可以选择以“A-0”开头行: df[df["lot"].str.startswith("A-0")] Python 内置字符串函数都可以应用到Pandas DataFrames 。...例如,在价格,有一些非数字字符,如 $ 和 k。我们可以使用 isnumeric 函数过滤掉。

2K20
  • 对比Excel,Python pandas删除数据框架

    标签:Python与Excel,pandas 删除也是Excel常用操作之一,可以通过功能区或者快捷菜单命令或者快捷键来实现。...上一篇文章,我们讲解了Python pandas删除数据框架中行一些方法,删除与之类似。然而,这里想介绍一些新方法。取决于实际情况,正确地使用一种方法可能比另一种更好。...唯一区别是,在该方法,我们需要指定参数axis=1。下面是.drop()方法一些说明: 要删除单列:传入列名字符串)。 删除多:传入要删除名称列表。...如果要覆盖原始数据框架,则要包含参数inplace=True。 图2 del方法 del是Python一个关键字,可用于删除对象。我们可以使用它从数据框架删除。...实际上我们没有删除,而是创建了一个新数据框架,其中只包含用户姓名、城市和性别,有效地“删除”了其他两。然后,我们将新创建数据框架赋值给原始数据框架以完成“删除操作”。注意代码双方括号。

    7.2K20

    python过滤字符串字母数字特殊

    今天遇到字符串处理问题,记录一下方便使用 1 str1 = input('请输入一个字符:') 2 #初始化字符、数字、空格、特殊字符计数 3 lowercase = 0 4 uppercase...= 0 5 number = 0 6 space = 0 7 other = 0 8 for strs in str1: 9 #如果在字符串中有小写字母,那么小写字母数量+1 10...,那么空格数量+1 18 elif strs == ' ': 19 space += 1 20 #如果在字符串中有特殊字符那么特殊字符数量+1 21 else...: 22 other += 1 23 print ("该字符串小写字母有:%d" %lowercase) 24 print ("该字符串大写写字母有:%d" %uppercase...) 25 print ("该字符串数字有:%d" %number) 26 print ("该字符串空格有:%d" %space) 27 print ("该字符串特殊字符有:%d" %other

    3.3K10

    10快速入门Query函数使用Pandas查询示例

    所以要过滤pandas DataFrame,需要做就是在查询函数中指定条件即可。 使用单一条件进行过滤 在单个条件下进行过滤时,在Query()函数中表达式仅包含一个条件。...返回输出将包含该表达式评估为真的所有行。 示例1 提取数量为95所有行,因此逻辑形式条件可以写为 - Quantity == 95 需要将条件写成字符串,即将其包装在双引号“”。...其实这里条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如 df.query("Quantity != 95") 文本过滤 对于文本过滤时,条件是列名字符串进行比较。...查询内置函数 Python内置函数,例如SQRT(),ABS(),Factorial(),EXP()等,也可以在查询表达式中使用。...日期时间过滤 使用Query()函数在日期时间值上进行查询唯一要求是,包含这些值应为数据类型dateTime64 [ns] 在示例数据,OrderDate是日期时间,但是我们df其解析为字符串

    4.5K10

    10个快速入门Query函数使用Pandas查询示例

    在开始之前,先快速回顾一下pandas -查询函数query。查询函数用于根据指定表达式提取记录,并返回一个新DataFrame。表达式是用字符串形式表示条件或条件组合。...这是因为query()函数对列名有一些限制。列名称UnitPrice(USD)是无效。我们要使用反引号把列名包含起来。...其实这里条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本过滤 对于文本过滤时,条件是列名字符串进行比较。...查询内置函数 Python内置函数,例如SQRT(),ABS(),Factorial(),EXP()等,也可以在查询表达式中使用。...日期时间过滤 使用Query()函数在日期时间值上进行查询唯一要求是,包含这些值应为数据类型dateTime64 [ns] 在示例数据,OrderDate是日期时间,但是我们df其解析为字符串

    4.4K20

    整理了10个经典Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas查询函数query。查询函数用于根据指定表达式提取记录,并返回一个新DataFrame。表达式是用字符串形式表示条件或条件组合。...这是因为query()函数对列名有一些限制。列名称UnitPrice(USD)是无效。我们要使用反引号把列名包含起来。...其实这里条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本过滤 对于文本过滤时,条件是列名字符串进行比较。...查询内置函数 Python内置函数,例如sort(),abs(),factorial(),exp()等,也可以在查询表达式中使用。...日期时间过滤 使用query()函数在日期时间值上进行查询唯一要求是,包含这些值应为数据类型dateTime64 [ns] 在示例数据,OrderDate是日期时间,但是我们df其解析为字符串

    22620

    整理了10个经典Pandas数据查询案例

    在开始之前,先快速回顾一下Pandas查询函数query。查询函数用于根据指定表达式提取记录,并返回一个新DataFrame。表达式是用字符串形式表示条件或条件组合。...这是因为query()函数对列名有一些限制。列名称UnitPrice(USD)是无效。我们要使用反引号把列名包含起来。...其实这里条件不一定必须是相等运算符,可以从==,!=,>,<,≥,≤中选择,例如: df.query("Quantity != 95") 文本过滤 对于文本过滤时,条件是列名字符串进行比较。...查询内置函数 Python内置函数,例如sort(),abs(),factorial(),exp()等,也可以在查询表达式中使用。...日期时间过滤 使用query()函数在日期时间值上进行查询唯一要求是,包含这些值应为数据类型dateTime64 [ns] 在示例数据,OrderDate是日期时间,但是我们df其解析为字符串

    3.9K20

    Python科学计算之Pandas

    你将获得类似下图表 ? 当你在Pandas查找时,你通常需要使用列名。这样虽然非常便于使用,但有时候,数据可能会有特别长列名,例如,有些列名可能是问卷表某整个问题。...Pandas为我们提供了多种方法来过滤我们数据并提取出我们想要信息。有时候你想要提取一整列。可以直接使用标签,非常容易。 ?...值得注意是,由于操作符优先级问题,在这里你不可以使用关键字‘and’,而只能使用’&’与括号 ? 好消息是,如果在你数据中有字符串,你也可以使用字符串方法来过滤数据。 ?...这样,我们可以设置一个(或多个)新索引。 ? 这将会给’water_year’一个新索引值。注意到列名虽然只有一个元素,却实际上需要包含于一个列表。...如果你想要多个索引,你可以简单地在列表增加另一个列名。 ? 在上面这个例子,我们把我们索引值全部设置为了字符串。这意味着我们不可以使用iloc索引这些列了。这种情况该如何?我们使用loc。

    2.9K00

    【Mark一下】46个常用 Pandas 方法速查表

    本篇文章总结了常用46个Pandas数据工作方法,包括创建数据对象、查看数据信息、数据切片和切块、数据筛选和过滤、数据预处理操作、数据合并和匹配、数据分类汇总以及map、apply和agg高级函数使用方法...例如可以从dtype返回值仅获取类型为bool。 3 数据切片和切块 数据切片和切块是使用不同或索引切分数据,实现从数据获取特定子方式。...常见数据切片和切换方式如表3所示: 表3 Pandas常用数据切分方法 方法用途示例示例说明[['列名1', '列名2',…]]按列名选择单列或多In: print(data2[['col1','...2 1 1选取行索引在[0:2)索引在[0:1)中间记录,行索引不包含2,索引不包含1loc[m:n,[ '列名1', '列名2',…]]选择行索引在m到n间且列名列名1、列名2记录...Series实现,整个预处理工作包含众多项目,本节列出通过Pandas实现场景功能。

    4.8K20

    pythonpandasDataFrame对行和操作使用方法示例

    pandasDataFrame时选取行或: import numpy as np import pandas as pd from pandas import Sereis, DataFrame...'w',使用类字典属性,返回是Series类型 data.w #选择表格'w',使用点属性,返回是Series类型 data[['w']] #选择表格'w',返回是DataFrame...#利用index值进行切片,返回是**前闭后闭**DataFrame, #即末端是包含 #——————新版本pandas已舍弃该方法,用iloc代替——————— data.irow...d three 12 13 data.ix[data.a 5,[2,2,2]] #选择'a'中大于5所在第2并重复3次 Out[33]: c c c three 12 12 12 #还可以行数或数跟行名列名混着用...github地址 到此这篇关于pythonpandasDataFrame对行和操作使用方法示例文章就介绍到这了,更多相关pandas库DataFrame行列操作内容请搜索ZaLou.Cn以前文章或继续浏览下面的相关文章希望大家以后多多支持

    13.4K30

    Pandas用了一年,这3个函数是我最最爱……

    01 assign 在数据分析处理,赋值产生新是非常高频应用场景,简单可能是赋值常数列、复杂可能是由一产生另外一个一,对于这种需求pandas有多种方法实现,但个人唯独喜欢assign,...注意事项: assign赋值新时,一般用新列名=表达式形式,其中新列名为变量形式,所以不加引号(加引号时意味着是字符串); assign返回创建了新dataframe,所以需要用新dataframe...02 eval 实际上,eval是一个Python基础函数,用于执行字符串形式计算表达式,例如以下简单实例: ?...当然,eval计算表达式本身属于字符串形式,所以自然也可以用Python通用字符串引用方法。如下图所示。 ?...当然,之所以说query中支持类似SQL语法,是因为其也有两个SQL中标志性设计,其一是@引用自定义外部变量,其二是对于特殊列名(例如包含空格字符)可以用反引号``加以修饰引用。

    1.9K30

    详解pythonpandas.read_csv()函数

    前言 在Python数据科学和分析领域,Pandas库是处理和分析数据强大工具。 pandas.read_csv()函数是Pandas库中用于读取CSV(逗号分隔值)文件函数之一。...数据输入输出:Pandas支持多种数据格式输入输出,包括CSV、Excel、SQL数据库、JSON等。 常用功能如下: 数据清洗:处理缺失值、数据过滤、数据转换等。...index_col:用作行索引列名。 usecols:需要读取列名列表或索引。 dtype:数据类型。...df = pd.read_csv('data.csv', usecols=['Name', 'Occupation']) 3.3 处理缺失数据 CSV文件可能包含缺失数据,pandas.read_csv...日期时间:如果CSV文件包含日期时间数据,可以使用parse_dates参数将解析为Pandasdatetime类型。

    26310

    -Pandas 清洗“脏”数据(一)

    PandasPython 很流行类库,使用它可以进行数据科学计算和数据分。...安装命令如下: pip install pandas 接下来,导入 Pandas 到我们代码,代码如下: #可以使用其他别名, 但是,pd 是官方推荐别名,也是大家习惯别名 import pandas...'][:n] 选择多:data[['column1','column2']] Where 条件过滤:data[data['columnname'] > condition] 处理缺失数据 缺失数据是最常见问题之一...在我们案例,我们推断地区并不是很重要,所以,我们可是使用“”空字符串或其他默认值。...删除一正列为 NA : data.drop(axis=1, how='all') 删除任何包含空值: data.drop(axis=1. how='any') 这里也可以使用像上面一样 threshold

    3.8K70

    检查 Python 给定字符串是否仅包含字母方法

    Python被世界各地程序员用于不同目的,如Web开发,数据科学,机器学习,并通过自动化执行各种不同过程。在本文中,我们将了解检查python给定字符串是否仅包含字符不同方法。...检查给定字符串是否仅包含字母不同方法 等阿尔法函数 这是检查 python 给定字符串是否包含字母最简单方法。它将根据字符串字母存在给出真和假输出。...: True ASCII 值 这是一个复杂方法,但它是查找字符串是否仅包含字母非常有效方法。...在ASCII,不同代码被赋予不同字符。因此,在此方法,我们将检查字符串是否包含定义范围内字符。...使用这些方法,您可以在 Python 程序快速确定字符串是否仅包含字母。

    23130

    整理了 25 个 Pandas 实用技巧,拿走不谢!

    这种方式很好,但如果你还想把列名变为非数值型,你可以强制地将一串字符赋值给columns参数: ? 你可以想到,你传递字符串长度必须与数相同。 3....更改列名 让我们来看一下刚才我们创建示例DataFrame: ? 我更喜欢在选取pandas时候使用点(.),但是这对那么列名中含有空格不会生效。让我们来修复这个问题。...但是,如果你对第三也使用这个函数,将会引起错误,这是因为这一包含了破折号(用来表示0)但是pandas并不知道如何处理它。...如果你想要进行相反过滤,也就是你将吧刚才三种类型电影排除掉,那么你可以在过滤条件前加上破浪号: ? 这种方法能够起作用是因为在Python,波浪号表示“not”操作。 14....将一个由列表组成Series扩展成DataFrame 让我们创建一个新示例DataFrame: ? 这里有两,第二包含Python由整数元素组成列表。

    3.2K10

    懂Excel也能轻松入门Python数据分析包pandas(二):高级筛选(上)

    ,记得要包含标题 - 上图2蓝框是条件区域,条件区域选择如图 - 点击确定,即可筛选出姓名 A1 记录 看看条件区域设定: - 格式为,标题+条件值(上下单元格) - 标题必须与数据源对应一致...pandas 没有啥高级筛选说法,因为他筛选本来就很灵活,看看 pandas 实现: - 简单易懂,都是之前文章介绍过,这里不多说 特定值过滤 "4、5或7班记录",Excel 高级筛选条件区域设置如下...方法 - in [4,5,6] ,语义清晰,班级是在列表即符合 pandas query 查询可以很灵活,可以接受外部一个列表变量,如下: - 查询字符串要使用外部变量,只需要写 "@+变量名字...pandas 新增列非常简单,df[新列名字]=新值,即可 - df.loc[:,'语文':'生物'] ,是获取语文到生物之间数据 - .sum(axis=1) ,横向求和。...- 第二句即查询,通俗易懂 "语文高于90,或者,数学高于或等于100",Excel 高级筛选条件区域设置如下: pandas 实现如下: - query 查询字符串可以使用 python

    1.2K20

    懂Excel也能轻松入门Python数据分析包pandas(二):高级筛选(上)

    ,记得要包含标题 - 上图2蓝框是条件区域,条件区域选择如图 - 点击确定,即可筛选出姓名 A1 记录 看看条件区域设定: - 格式为,标题+条件值(上下单元格) - 标题必须与数据源对应一致...pandas 没有啥高级筛选说法,因为他筛选本来就很灵活,看看 pandas 实现: - 简单易懂,都是之前文章介绍过,这里不多说 特定值过滤 "4、5或7班记录",Excel 高级筛选条件区域设置如下...方法 - in [4,5,6] ,语义清晰,班级是在列表即符合 pandas query 查询可以很灵活,可以接受外部一个列表变量,如下: - 查询字符串要使用外部变量,只需要写 "@+变量名字...pandas 新增列非常简单,df[新列名字]=新值,即可 - df.loc[:,'语文':'生物'] ,是获取语文到生物之间数据 - .sum(axis=1) ,横向求和。...- 第二句即查询,通俗易懂 "语文高于90,或者,数学高于或等于100",Excel 高级筛选条件区域设置如下: pandas 实现如下: - query 查询字符串可以使用 python

    1.6K10
    领券