当今的无线信号环境比以往任何时候都要复杂。 面对迅速的创新,新的无线信号标准以及不断增长的频率和带宽要求,研究人员必须找到新的方法来检测RF干扰,分类信号类型,测试传播模型并确保在各种环境中的覆盖范围。 他们需要一种经济高效,通用且可联网的替代方案,以替代传统的基于硬件的频谱分析设备。 为了在真实条件下进行实验并验证仿真或模型,这些频谱分析解决方案必须能够在实验室和现场中部署,并与通用实验室软件和处理工具集成在一起,以进行更深入的信号分析。
今天介绍一个用于处理古气候时间序列分析的Python库--Pyleoclim,摆张图片在这里吧,介绍十分明确,我是用来分析古气候序列数据的
EEG信号是大脑神经元电活动的直接反应,包含着丰富的信息,但EEG信号幅值小,其中又混杂有噪声干扰,如何从EEG信号中抽取我们所感兴趣的信号是一个极为重要的问题。自1932年Dietch首先提出用傅里叶变换方法来分析EEG信号,该领域相继引入了频域分析、时域分析等脑电分析的经典方法。
用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重点在于频谱分辨率及分析误差。频谱分辨率D和频谱分析的点数N直接相关,其分辨率为2π/N 。因此2π/N≤D,可以据这个公式确定频率的分辨率。
Scipy 的信号处理模块提供了丰富的工具,用于处理和分析信号数据。在本篇博客中,我们将深入介绍 Scipy 中的信号处理功能,并通过实例演示如何应用这些工具。
学习用 FFT 对连续信号和时域离散信号进行频谱分析(也称谱分析)的方法, 了解可能出现的分析误差及其原因,以便正确应用FFT。
电磁频谱,是指按电磁波波长(或频率)连续排列的电磁波族,是一种看不见摸不着但时刻伴随我们的东西。当我们使用电磁波将一串信息发送出去时,在时域上他是一段强度不同,疏密变化的时间信号,在其中的任意时刻,你所能获取的只有他的强度;当我们换个角度,站在频域上来看时,在信号的每一个时刻,你都能看到他从时域的一个点延展成了频域的一个面,你所能获取到的信息量将成倍增加,这有助于我们从中解析出更丰富的内容。
频谱分析仪是分析电路设计的重要工具,可能你没接触过,但是你做CE、RE这些实验的设备都有它的影子,因此对其做深入的了解还是有必要的。
在使用频谱分析仪之前,有必要了解一下分贝(dB)和分贝毫瓦(dBm)的基本概念,下面作一简要介绍。
所谓时间序列就是按照时间的顺序记录的一列有序数据。对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。在日常生产、生活中,时间序列比比皆是,时间序列分析的应用领域非常广泛。
振弦采集仪是一个用于测量和记录物体振动的设备。它通过测量物体表面的振动来提取振动信号数据,然后将其转换为数字信号,以便进行分析和处理。在实际应用中,振弦采集仪是广泛应用于机械、建筑、航空航天和汽车等领域的仪器之一。本文将从数据采集和准备、数据分析和处理以及数据可视化三个方面来介绍振弦采集仪采集到的数据分析和处理方法。
SnapGene是一款广泛应用于分子生物学研究的专业软件,具备多种功能,如DNA序列编辑、PCR反应设计、限制性酶切图谱分析等。本文将介绍SnapGene软件的基本功能和使用方法,并结合具体案例分析SnapGene在分子生物学研究中的应用。
现代高度发达的通信技术可以让人们在地球的任意地点控制频谱分析仪,因此就更要懂得不同参数设置和不同信号条件对显示结果的影响。
遥感技术已成为研究和了解地球表面和大气的重要工具。ENVI软件是一款领先的软件包,为专业人员提供分析和处理遥感数据所需的必要工具。ENVI软件已被广泛应用于农业、地质、林业和城市规划等各个领域。本文将探索ENVI软件的特点和使用方法,并提供一个具体的使用案例,演示如何使用ENVI软件进行遥感数据分析。
地震时震源释放的能量以地震波的形式经过不同的路径、地形和介质传播至地表,由于波的传播特性导致地震地面运动具有随时间和空间不断变化的特征。通常在结构的地震反应分析中,只是考虑地震地面运动的时变特性,而忽略地震地面运动随空间变化所带来的影响。对于高层与高耸结构、中小跨度桥梁等在水平面内的几何尺寸比较小的结构物来说,地震地面运动的空间效应影响很小,计算结果能够满足工程需要。
前段时间,Twitter主上一位叫imajo的日本小哥就做了这样一个有点浪漫的机器学习项目,打个响指就让房间灯光变成粉色的视频,获得了非常多点赞和转发,广受好评!
所谓频谱分析,又称为功率谱分析或者功率谱密度(Power Spectral Density, PSD)分析,实际就是通过一定方法求解信号的功率power随着频率变化曲线。笔者在这里对目前常用的频谱分析方法做一个总结,并重点介绍目前EEG分析中最常用的频谱分析方法,并给出相应的Matlab程序。
桥梁作为交通系统的组成部分起到了重要作用,在使用过程中,受到环境、有害物质的侵蚀,车辆、风、地震、疲劳、人为因素等作用,以及材料自身性能的不断退化,导致结构各部分产生不同程度的损伤和劣化,这些损伤如果不能及时得到检测和维修轻则影响行车安全和缩短桥梁使用寿命,重则导致桥梁突然破坏和倒塌。
Python是目前最热门的开发语言,拥有强大的分析库和可视化工具,包括NumPy、SciPy、Matplotlib、Pandas、StatsModels、Scikit-learn、Keras、Gensim等。Python非常容易使用,可以快速实现各个领域的工业物联网应用。
本文为大家推荐一份深度学习模型压缩的资源列表,涵盖了主要论文成果、研究人员、会议、新闻等内容。
1、傅里叶变换 傅里叶变换是信号领域沟通时域和频域的桥梁,在频域里可以更方便的进行一些分析。傅里叶主要针对的是平稳信号的频率特性分析,简单说就是具有一定周期性的信号,因为傅里叶变换采取的是有限取样的方式,所以对于取样长度和取样对象有着一定的要求。
随着信息学科的快速发展,以及大规模集成电路、超大规模集成电路和软件开发引起的计算机学科的飞速发展,自1965年快速傅里叶变换算法提出后,数字信号处理( digital signal processing,DSP)迅速发展成为一门新兴的独立的学科体系,这一学科已经应用于几乎所有工程、科学、技术领域,并渗透到人们日常生活和工作的方方面面。简言之,数字信号处理是把信号用数字或符号表示的序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法对信号作各种所需的处理,以达到提取有用信息、便于应用的目的。
该试验台在不同小齿轮条件下进行测试,并通过加速度计进行振动信号采集,加速度计采样率为10KHz、采样时长为10s,采样数据共3包,每一包数据对应着不同故障类型,分别是健康状态、齿轮断齿、齿轮磨损状态下的数据集。该数据集被授权于用于任何学术和研究目的。
因为项目需要,今天学着使用的一下频谱分析仪,项目属于物联网类型,通信方式是使用的当前市面上比较火的Lora技术(当前市面上常用的两种低功耗远距离通信方案是LORA和NB-LOT)。本次使用频谱分析仪用来测量设计的板子用Lora发送无线数据时候的一些相关参数,主要测试天线发送数据时候的发射功率(单位:DB)。在这里对仪器的基本使用做一个记录,以为备忘。
MFCC是Mel-Frequency Cepstral Coefficients的缩写,全称是梅尔频率倒谱系数。它是在1980年由Davis和Mermelstein提出来的,是一种在自动语音和说话人识别中广泛使用的特征。顾名思义,MFCC特征提取包含两个关键步骤:梅尔频率分析和倒谱分析,下面分别进行介绍。
新一代Wipry 5X为频谱分析仪Wipry Combo的升级版本,主要针对2.4 & 5GHz两个频段的wifi信号进行测试,同时兼容苹果iOS和Android双系统;具有双带频谱分析功能,智能的触摸屏操作,简便快捷,口袋型轻巧的设计,对数据记录分析,随时发送E-mail功能,让你的测试测量变得随时随地,不再受时间、空间、地理位置的影响。
一、实验目的 1. 了解数字信号处理当今应用的基本情况。 2. 对该课程做系统地总结。 3.将所学知识运用到实践中,能够学以致用。
“正弦信号频谱分析多用幅值谱,单位是g。随机信号频谱分析多用功率谱密度PSD (Power Spectrum Density),单位是g2/Hz。是否只是使用习惯,还是另有原因?文本将着重进行解释。”
数字信号处理 ( DSP , Digital Signal Processing ) 是 信息学科 和 计算机学科 结合产生的一门新的学科 , 核心是 使用 数值计算的方法 , 完成对信号的处理 ;
5G被业界视为革命性的无线技术,但作为下一代标准基础之一的高频谱要求运营商采用与以前截然不同的方式来构建网络并对之前的蜂窝网络进行升级。 20世纪80年代的第一代移动网络给消费者带来了模拟话音信道(a
Adobe Audition是一款专业的音频编辑软件,它拥有多种音频处理工具和效果器,能够对音频进行剪辑、混音、处理和修复。
jupyter notebook 是个好东西,但是默认皮肤实在是看得人难受,最不能忍的是字号太小。感谢GitHub大神,提供了这款主题更改工具,网上很多人介绍了更换主题的方法。我还做了一些字号、字体等修改,现在舒服多了。另外,前面我写了一个系列的jupyter文章,很详细,有兴趣的小伙伴可以参考文章末尾的历史文章哦!
MDI Jade是一款功能强大的x射线衍射软件,它被广泛应用于材料科学、地质学和生物学领域。MDI Jade具有许多独特的功能,这些功能可以帮助用户快速地分析和解释衍射数据。在本文中,我将通过几个实际案例来介绍MDI Jade的一些独特功能。
数字图像处理是一门涉及获取、处理、分析和解释数字图像的科学与工程领域。这一领域的发展源于数字计算机技术的进步,使得对图像进行复杂的数学和计算处理变得可能。以下是数字图像处理技术的主要特征和关键概念:
随机信号的功率谱分析是一种广泛使用的信号处理方法,能够辨识随机信号能量在频率域的分布,同时也是解决多种工程随机振动问题的主要途径之一.Matlab作为大型数学分析软件,得到了广泛应用,目前已推出7.x的版本.Matlab内建了功能强大的信号处理工具箱.psd函数是Matlab信号处理工具箱中自功率谱分析的主要内建函数.Matlab在其帮助文件中阐述psd函数时均将输出结果直接称为powerspectrumdensity,也即我们通常所定义的自功率谱.实际上经分析发现,工程随机振动中功率谱标准定义[1]与Matlab中psd函数算法有所区别,这一点Matlab的帮助文档没有给出清晰解释.因此在使用者如没有详细研究psd函数源程序就直接使用,极易导致概念混淆,得出错误的谱估计.本文详细对比了工程随机振动理论的功率谱定义与Matlab中psd函数计算功率谱的区别,并提出用修正的psd函数计算功率谱的方法,并以一组脉动风压作为随机信号,分别采用原始的psd函数与修正后的psd函数分别对其进行功率谱分析,对比了两者结果的差异,证实了本文提出的修正方法的有效性.1随机振动相关理论1.1傅立叶变换求功率谱理论上,平稳随机过程的自功率谱密度定义为其自相关函数的傅立叶变换:Sxx()=12p+-Rxx(t)eitdt(1)其中,S(xx)()为随机信号x(t)的自功率谱密度,Rxx(t)为x(t)的自相关函数.工程随机振动中的随机过程一般都是平稳各态历经的,且采样信号样本长度是有限的,因此在实用上我们采用更为有效的计算功率谱的方法,即由时域信号x(t)构造一个截尾函数,如式(2)所示:xT(t)=x(t),0tT0,其他(2)其中,t为采样时刻,T为采样时长,x(t)为t时刻的时域信号值.由于xT(t)为有限长,故其傅立叶变换A(f,T)以及对应的逆变换存在,分别如式(3)、(4)所示:A(f,T)=+-xT(t)e-i2pftdt(3)xT(t)=+-A(f,T)ei2pftdt(4)由于所考虑过程是各态历经的,可以证明:Sxx(f)=limT1TA(f,T)2(5)在实际应用中,式(5)是作功率谱计算的常用方法.1.2功率谱分析中的加窗和平滑处理在工程实际中,为了降低工程随机信号的误差,一般对谱估计需要进行平滑处理.具体做法为:将时域信号{x(t)}分为n段:{x1(t)},{x2(t)},…,{xn-1(t)},{xn(t)},对每段按照式(5)求功率谱Sxixi(f),原样本的功率谱可由式(6)求得:Sxx(f)=1nni=1Sxixi(f)(6)如取一样本点为20480的样本进行分析,将样本分割为20段进行分析,每段样本点数为1024.将每段1024个样本点按照式(5)的方法分别计算功率谱后求平均,即可得到经过平滑处理的原样本的功率谱,这样计算出的平滑谱误差比直接计算要降低很多.另一方面,由于实际工程中随机信号的采样长度是有限的,即采样信号相当于原始信号的截断,即相当于用高度为1,长度为T的矩形时间窗函数乘以原信号,导致窗外信息完全丢失,引起信息损失.时域的这种信号损失将会导致频域内增加一些附加频率分量,给傅立叶变换带来泄漏误差.构造一些特殊的窗函数进行信号加窗处理可以弥补这种误差,即构造特殊的窗函数{u(t)},用{u(t)}去乘以原数据,对{x(t)u(t)}作傅立叶变换可以减少泄漏:Aw(f,T)=+-u(t)xT(t)e-i2pftdt(7)其中,Aw(f,T)为加窗后的傅立叶变换.u(t)xT(t)实际上是对数据进行不等加权修改其结果会使计算出
一、背景介绍 水泵在数据中心空调水系统中为冷冻水循环和冷却水循环提供动力,是重要的冷源设备。某数据中心1栋包含冷冻泵,冷却泵,补水泵及其配套设备,但投入使用,至今已运行数年,期间没有进行过预防性的大修,设备各部位可能出现磨损、老化变形等现象,导致设备各部位配合尺寸出现变化,易造成主要部件磨损,使性能下降或损坏,有很大的故障隐患,间接会影响冷机的运行及机房末端的正常供冷。 2015年,R水泵厂家对1栋水泵的运行情况进行了测试,采用声音传导的方法,如下图所示,总结出现的故障问题如下表所示。 名称编号故障描述处理
语音信号处理综合运用了数字信号处理的理论知识,对信号进行计算及频谱分析,设计滤波器,并对含噪信号进行滤波。
随着软硬件技术的发展,仪器的智能化与虚拟化已成为未来实验室及研究机构的发展方向[1]。虚拟仪器技术的优势在于可由用户定义自己的专用仪器系统,且功能灵活,很容易构建,所以应用面极为广泛。基于计算机软硬件平台的虚拟仪器可代替传统的测量仪器,如示波器、逻辑分析仪、信号发生器、频谱分析仪等[2]。从发展史看,电子测量仪器经历了由模拟仪器、智能仪器到虚拟仪器,由于计算机性能的飞速发展,已把传统仪器远远抛到后面,并给虚拟仪器生产厂家不断带来连锅端的技术更新速率。目前已经有许多较成熟的频谱分析软件,如SpectraLAB、RSAVu、dBFA等。
AirMagnet Spectrum XT 可实时探测并确定大量非 WLAN 干扰源,该干扰源会干扰和降低 WLAN 网络性能。设备或干扰源名单包括蓝牙设备、数字和模拟无绳电话、传统和变频微波炉、无线游戏控制器、数字视频转换器、婴儿监视器、RF 干扰发射台、雷达、运动探测器和 zigbee 设备等等。
功率谱是功率谱密度函数的简称,它定义为单位频带内的信号功率。它表示了信号功率随着频率的变化情况,即信号功率在频域的分布状况。
目前,神经图像压缩(NIC)在分布内(in-distribution, IND)数据的 RD 性能和运行开销表现出了卓越的性能。然而,研究神经图像压缩方法在分布外(out-of-distribution, OOD)数据的鲁棒性和泛化性能方面的工作有限。本文的工作就是围绕以下关键问题展开的:
由于我热衷于机器学习在时间序列中的应用,特别是在医学检测和分类中,在尝试的过程中,一直在寻找优质的Python库(而不是从头开始编写代码)去实现我对于数据处理的需求。以下是我在处理时间序列数据(time series data)。我希望其中一些对你也有用!
wifi explorer pro mac中文版是一款MacOS平台之下的无线网络扫描和连接管理器。通过WiFi Explorer你可以查找正在广播 SSID 的接入点和客户端。它可以用于WiFi现场调查,发现WiFi信号源,并连接到的无线网络。WiFi Explorer Pro Mac下载可以很方便地分析周围的WiFi信号,很直观地显示相关的SSID(信号名称)、BSSID(Mac地址)、RSSI(信号强度)、噪音强度、信道、传输速率、是否加密等信息,有些信息还可以通过图表来实时追踪,解决网速慢或老掉线等问题。
来源:专知本文为论文,建议阅读5分钟超图作为一种特殊的图结构化数据, 受到广泛关注。 随着图结构化数据挖掘的兴起, 超图作为一种特殊的图结构化数据, 在社交网络分析、图像处理、生物反应解析等领域受到广泛关注. 研究者通过解析超图中的拓扑结构与节点属性等信息, 能够有效解决实际应用场景中所遇到的如兴趣推荐、社群划分等问题. 根据超图学习算法的设计特点, 将其划分为谱分析方法和神经网络方法, 根据方法对超图处理的不同手段, 可进一步划分为展开式方法和非展开式方法. 若将展开式方法用于不可分解超图, 则很有可能
WiFi Explorer Pro 是一款适用于 macOS 的网络扫描和故障排除工具。它由 Adrian Granados 开发,旨在帮助用户分析和优化他们的无线网络。
在语音识别(SpeechRecognition)和话者识别(SpeakerRecognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients,简称MFCC)。根据人耳听觉机理的研究发现,人耳对不同频率的声波有不同的听觉敏感度。从200Hz到5000Hz的语音信号对语音的清晰度影响对大。两个响度不等的声音作用于人耳时,则响度较高的频率成分的存在会影响到对响度较低的频率成分的感受,使其变得不易察觉,这种现象称为掩蔽效应。由于频率较低的声音在内耳蜗基底膜上行波传递的距离大于频率较高的声音,故一般来说,低音容易掩蔽高音,而高音掩蔽低音较困难。在低频处的声音掩蔽的临界带宽较高频要小。所以,人们从低频到高频这一段频带内按临界带宽的大小由密到疏安排一组带通滤波器,对输入信号进行滤波。将每个带通滤波器输出的信号能量作为信号的基本特征,对此特征经过进一步处理后就可以作为语音的输入特征。由于这种特征不依赖于信号的性质,对输入信号不做任何的假设和限制,又利用了听觉模型的研究成果。因此,这种参数比基于声道模型的LPCC相比具有更好的鲁邦性,更符合人耳的听觉特性,而且当信噪比降低时仍然具有较好的识别性能。
光谱分析仪器(简称“光谱仪”)主要用于科学研究和生产过程中的目标光谱成分检测分析,其产品种类多、用途范围广。国外的光谱仪厂商主要有日本的横河公司、安立公司、岛津公司,美国的VIAVI公司、安捷伦公司、 赛默飞公司,加拿大EXFO公司以及德国布鲁克公司等。国内的研发生产公司主要有北京北分瑞利公司、北京普析通用仪器公司、天津港东科技公司和中电科仪器仪表有限公司等。
故障诊断入门级选手提个问题,振动信号分析直接做频谱分析就好了,为啥需要人工智能? - amaze2的回答 - 知乎 https://www.zhihu.com/question/332473558/a
风力发电作为可再生能源的重要方式,已广泛应用于世界各地。为了降低风力发电机维护成本,提高故障诊断效率,需要安装风力发电机故障诊断系统。
按照题目要求,首先应利用计算机生成一个由多个频率叠加而成的信号。之后在不通风抽样频率之下对信号进行采样。编写FFT程序对信号进行DFT变换,应能观察出在满足和不满足奈奎斯特采样定理的情况下信号频谱分别处于不混叠和混叠状态。然后需要对信号进行恢复以观察满足或不满足奈奎斯特采样定理的情况下,频域的频谱混叠对时域恢复信号的影响。在频谱混叠时,观察其时域信号的失真。
领取专属 10元无门槛券
手把手带您无忧上云