首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    史上最简单!冒泡、选择排序的Python实现及算法优化详解

    1、排序概念 内部排序和外部排序 根据排序过程中,待排序的数据是否全部被放在内存中,分为两大类: 内部排序:指的是待排序的数据存放在计算机内存中进行的排序过程; 外部排序:指的是排序中要对外存储器进行访问的排序过程。 内部排序是排序的基础,在内部排序中,根据排序过程中所依据的原则可以将它们分为5类:插入排序、交换排序、选择排序、归并排序;根据排序过程的时间复杂度来分,可以分为简单排序、先进排序。冒泡排序、简单选择排序、直接插入排序就是简单排序算法。 评价排序算法优劣的标准主要是两条:一是算法的运算量,这

    04

    OpenCV SIFT特征算法详解与使用

    SIFT特征是非常稳定的图像特征,在图像搜索、特征匹配、图像分类检测等方面应用十分广泛,但是它的缺点也是非常明显,就是计算量比较大,很难实时,所以对一些实时要求比较高的常见SIFT算法还是无法适用。如今SIFT算法在深度学习特征提取与分类检测网络大行其道的背景下,已经越来越有鸡肋的感觉,但是它本身的算法知识还是很值得我们学习,对我们也有很多有益的启示,本质上SIFT算法是很多常见算法的组合与巧妙衔接,这个思路对我们自己处理问题可以带来很多有益的帮助。特别是SIFT特征涉及到尺度空间不变性与旋转不变性特征,是我们传统图像特征工程的两大利器,可以扩展与应用到很多图像特征提取的算法当中,比如SURF、HOG、HAAR、LBP等。夸张一点的说SIFT算法涵盖了图像特征提取必备的精髓思想,从特征点的检测到描述子生成,完成了对图像的准确描述,早期的ImageNet比赛中,很多图像分类算法都是以SIFT与HOG特征为基础,所有SIFT算法还是值得认真详细解读一番的。SIFT特征提取归纳起来SIFT特征提取主要有如下几步:

    03
    领券