在许多情况下,机器学习模型比传统线性模型更受欢迎,因为它们具有更好的预测性能和处理复杂非线性数据的能力。然而,机器学习模型的一个常见问题是它们缺乏可解释性。例如,集成方法如XGBoost和随机森林将许多个体学习器的结果组合起来生成结果。尽管这通常会带来更好的性能,但它使得难以知道数据集中每个特征对输出的贡献。为了解决这个问题,可解释人工智能(explainable AI, xAI)被提出并越来越受欢迎。xAI领域旨在解释这些不可解释的模型(所谓的黑匣子模型)如何进行预测,实现最佳的预测准确性和可解释性。这样做的动机在于,许多机器学习的真实应用场景不仅需要良好的预测性能,还要解释生成结果的方式。例如,在医疗领域,可能会根据模型做出的决策而失去或挽救生命,因此了解决策的驱动因素非常重要。此外,能够识别重要变量对于识别机制或治疗途径也很有帮助。最受欢迎、最有效的xAI技术之一是SHAP。
早期频繁的患者移动大大降低了 ICU 后综合征(post-intensive care syndrome)和长期功能障碍的风险。来自斯坦福大学的研究者开发和测试了计算机视觉算法来检测成人 ICU 病房中的患者移动活动。移动活动被定义为将患者移上或移下床、移上椅子或移下椅子。研究者从 Intermountain LDS 医院的 ICU 病房中收集了一组具备隐私安全性的深度视频图像,包含 563 个移动活动实例和 98,801 帧视频数据,这些数据来自 7 个安装在病房墙上的深度传感器。总的来说,67% 的移动活动实例用于训练算法来检测移动活动的发生时间和持续时长以及参与每次移动的医护人员数量。剩下的 33% 实例用来评估算法性能。检测移动活动的算法在四种活动中达到了 89.2% 的平均特异性(specificity)、87.2% 的敏感度(sensitivity)。量化移动活动中医护人员数量的算法达到了 68.8% 的平均准确率。
通常 dplyr 和 R 更适合对列进行操作,而对行操作则显得更麻烦。这篇文章,我们将学习围绕rowwise() 创建的 row-wise 数据框的 dplyr 操作方法。
其实map 除了对向量有用,也可以作用于数据框或矩阵类型,相当于把其中的每一列作为一个单独的元素来看,有点像按列的apply:
最重要的参数是base_estimator,n_estimators和learning_rate。
Pandas是一个建立在NumPy之上的开源Python库。Pandas可能是Python中最流行的数据分析库。它允许你做快速分析,数据清洗和准备。Pandas的一个惊人之处是,它可以很好地处理来自各种来源的数据,比如:Excel表格、CSV文件、SQL文件,甚至是网页。
大数据和机器学习的组合是一项革命性的技术,如果以恰当的方式使用它,它可以在任何工业上产生影响。在医疗保健领域,它在很多情况下都有重要的使用,例如疾病检测、找到流行病早期爆发的迹象、使用集群来找到瘟疫流行的地区(例如寨卡(zika)易发区),或者在空气污染严重的国家找到空气质量最好的地带。在这篇文章里,我尝试用标准的机器学习算法和像 Apache Spark、parquet、Spark mllib和Spark SQL这样的大数据工具集,来探索已知的心脏疾病的预测。 源代码 这篇文章的源代码可以在GitHub的
特征工程对于模型的执行非常重要,即使是具有强大功能的简单模型也可以胜过复杂的算法。实际上,特征工程被认为是决定预测模型成功或失败的最重要因素。特征工程真正归结为机器学习中的人为因素。通过人类的直觉和创造力,您对数据的了解程度可以带来不同。
在许多情况下,由于其出色的预测性能和处理复杂非线性数据的能力,机器学习模型通常优于传统的线性模型。然而,机器学习模型常见的批评是它们缺乏可解释性。例如,集成方法如XGBoost和随机森林将许多个体学习器的结果结合起来生成它们的结果。尽管这通常导致更好的性能,但它使得很难知道数据集中每个特征对输出的贡献是多少。
多步预测的策略通常有两种,即单不预测策略和递归预测策略。时序基础模型 ARIMA 是单步预测模型。那么如何实现多步骤预测?也许一种方法是递归使用同一模型。从模型中得到一个周期的预测结果,作为预测下一个周期的输入。然后,将第二期的预测作为预测第三期的输入。可以通过使用前一期的预测结果来遍历所有时期。这正是递归预测或迭代预测策略的作用。图(A)显示模型首先产
特征工程本质是一项工程活动,它目的是最大限度地从原始数据中提取并加工特征以供模型或者算法使用。在传统机器学习领域流传着这样一句话: “数据和特征决定了机器学习的上限,而模型和算法只是逼近这个上限而已”,从而可见特征工程的重要性。其实对于结构化数据建模,即使用深度学习模型,特征工程也是比模型本身要重要的。
决策树是用于机器学习最流行的算法之一,尤其对于分类和回归问题。我们每次做决策时大脑都像决策树一样工作。
除了函数,减少重复代码的另一种工具是迭代,它的作用在于可以对多个输入执行同一种处理,比如对多个列或多个数据集进行同样的操作。
表示两者之间的交互。使用 scikit-learn 的PolynomialFeatures,来为所有特征组合创建交互术项会很有用。 然后,我们可以使用模型选择策略,来识别产生最佳模型的特征和交互项的组合。
这里向您展示如何在R中使用glmnet包进行岭回归(使用L2正则化的线性回归),并使用模拟来演示其相对于普通最小二乘回归的优势。
表示被测试设备(DUT)不丢弃测试帧时所能支持的最大的发送数据包速率。它的主要作用是用来反映网络互连设备在不丢弃数据帧的情况下所能处理的最大数据包流量。它是网络互联设备的一个重要性能参数。通过对网络互联设备在不同配置下吞吐量指标的测试,可以评估和优化相关设置,提高网络的整体性能。
在此前的新闻方案中有看到,腾讯云利用其物联网开发平台的设备数据引擎,硬件厂商不用修改设备固件即可以快速对接物联网平台。
本文是 Python 系列的 Cufflinks 补充篇。整套 Python 盘一盘系列目录如下:
在本文中,我们将看到深度混合学习如何应用于时间序列数据,以及它是否与图像数据一样有效。
今天在使用连接操作时发现:虽然都是合并操作函数,dplyr 包里的 *_join() 和基础包里面的 merge() 存在差异,不同的数据结构,结果也会存在偏差。
大数据文摘作品,转载要求见文末 编译团队|姚佳灵 吴怡雯 黄念 本文主要关注在Python中进行数据预处理的技术。学习算法的出众表现与特定的数据类型有密切关系。而对于没有经过缩放或非标准化的特征,学习算法则会给出鲁莽的预测。像XGBoost这样的算法明确要求虚拟编码数据,而决策树算法在有些情况下好像完全不关心这些! 简而言之,预处理是指在你将数据“喂给”算法之前进行的一系列转换操作。在Python中,scikit-learn库在sklearn.preprocessing下有预装的功能。有更多的选择来进行预
在使用Python进行数据分析时,Jupyter Notebook是一个非常强力的工具,在数据集不是很大的情况下,我们可以使用pandas轻松对txt或csv等纯文本格式数据进行读写。
情感分析是自然语言处理(NLP)的一个子领域,旨在分辨和分类文本数据中表达的底层情感或情感。无论是了解客户对产品的意见,分析社交媒体帖子还是评估公众对政治事件的情感,情感分析在从大量文本数据中解锁有价值的见解方面发挥着重要作用。
作者 | Francesca Picache 编译 | VK 来源 | Towards Data Science
其中,手动for循环我最常用,apply系列半吊子,purrr函数一窍不通,所以要学习一下。
2.设备之间(交换机之间,交换机与路由器之间,交换机与主机之间)交互时,VLAN TAG的添加和移除。
任何参与过机器学习比赛的人,都能深深体会特征工程在构建机器学习模型中的重要性,它决定了你在比赛排行榜中的位置。
https://hbctraining.github.io/Intro-to-R/lessons/04_introR-data-wrangling.html
本章我们将向大家介绍如何使用STM32自带的CAN控制器来实现两个开发板之间的CAN通讯,并将结果显示在TFTLCD模块上。本章分为如下几个部分:
本章的目的是通过彻底检查序列和数据帧数据结构来介绍 Pandas 的基础。 对于 Pandas 用户来说,了解序列和数据帧的每个组件,并了解 Pandas 中的每一列数据正好具有一种数据类型,这一点至关重要。
Pandas是一个用于数据操作和分析的Python库。它建立在 numpy 库之上,提供数据帧的有效实现。数据帧是一种二维数据结构。在数据帧中,数据以表格形式在行和列中对齐。它类似于电子表格或SQL表或R中的data.frame。最常用的熊猫对象是数据帧。大多数情况下,数据是从其他数据源(如csv,excel,SQL等)导入到pandas数据帧中的。在本教程中,我们将学习如何创建一个空数据帧,以及如何在 Pandas 中向其追加行和列。
在局域网内,我们会用 VLAN 对不同的用户、不同的部门、不同用途的区域进行分组,一个 VLAN 区分一组用户,便于管理和使用。
Pandas 是 Python 中最广泛使用的数据分析和操作库。它提供了许多功能和方法,可以加快 「数据分析」 和 「预处理」 步骤。
不管在学习过程还是在实际的项目工作中,大家对 vlan 技术都不陌生而且都可以灵活运用,虽然会用但对于数据帧在何时打上 vlan tag,如何在 trunk 链路上传输、何时剥离 vlan tag 以及在华为交换机的交换机制又是怎样的呢?大家可能有这方面的困惑,今天有我和大家一块儿探讨一下数据帧交换的详细过程:
Tidyverse中包含一个purrr程序包,之前在看数据处理分析时候,一直看到别人的code中,涵盖purrr,map函数,但是一直不知道这个是干什么的,现在发现purrr真的是极大的加速了数据处理流程,减少了code的编写。
每个数据科学家都必须掌握的最重要的技能之一是正确研究数据的能力。彻底的探索性数据分析 (EDA, Exploratory Data Analysis) 是必要的,这是为了确保收集数据和执行分析的完整性。
本文为WebSocket协议的第五章,本文翻译的主要内容为WebSocket传输的数据相关内容。
在WebSocket协议中,数据是通过一系列数据帧来进行传输的。为了避免由于网络中介(例如一些拦截代理)或者一些在第10.3节讨论的安全原因,客户端必须在它发送到服务器的所有帧中添加掩码(Mask)(具体细节见5.3节)。(注意:无论WebSocket协议是否使用了TLS,帧都需要添加掩码)。服务端收到没有添加掩码的数据帧以后,必须立即关闭连接。在这种情况下,服务端可以发送一个在7.4.1节定义的状态码为1002(协议错误)的关闭帧。服务端禁止在发送数据帧给客户端时添加掩码。客户端如果收到了一个添加了掩码的帧,必须立即关闭连接。在这种情况下,它可以使用第7.4.1节定义的1002(协议错误)状态码。(这些规则可能会在将来的规范中放开)。
Sinec H1是第一个基于以太网的工业协议,可提供传输层功能。该协议由西门子推出,目的是使用现有标准并丰富工业通信协议的相关细节,主要用于控制系统之间的数据传输。它具有大带宽特点,非常适合传输大量数据。基于ISO / IEC 8073标准,定义了不同的传输方法。
SAE在其规范SAE J2735中定义了消息层的具体消息类型、数据结构、消息编码方式等,包括用于基本安全消息的具体格式、编码方式等,该消息用于向周围车辆广播本车的位置、速度、方向角和运动轨迹等相关信息。同时,BSM消息还支持事件触发消息,包括事件类型等消息。SAE J2735中消息的定义按照消息——>数据帧——>数据单元结构进行定义,并且采用ASN.1编码规则。对于消息类型,SAE J2735一共定义了17个基本消息类型,包括基本安全消息(BSM)、地图数据(MAP)、信号相位和定时消息(SPAT)等。
Spark无疑是当今数据科学和大数据领域最流行的技术之一。尽管它是用Scala开发的,并在Java虚拟机(JVM)中运行,但它附带了Python绑定,也称为PySpark,其API深受panda的影响。在功能方面,现代PySpark在典型的ETL和数据处理方面具有与Pandas相同的功能,例如groupby、聚合等等。
在本文中,将演示计算机视觉问题,它结合了两种最先进的技术:深度学习和Apache Spark。将利用深度学习管道的强大功能来 解决多类图像分类问题。
概览 pandas.DataFrame 创建DataFrame 列表 字典 系列(Series) 列选择 列添加 列删除 pop/del 行选择,添加和删除 标签选择 loc 按整数位置选择 iloc 行切片 附加行 append 删除行 drop 数据帧(DataFrame)是二维数据结构,即数据以行和列的表格方式排列 数据帧(DataFrame)的功能特点: 潜在的列是不同的类型 大小可变 标记轴(行和列) 可以对行和列执行算术运算 pandas.DataFrame 构造函数: pandas.Data
VLAN(Virtual Local Area Network)即虚拟局域网,是将一个物理的LAN在逻辑上划分成多个广播域的通信技术。VLAN内的主机间可以直接通信,而VLAN间不能直接通信,从而将广播报文限制在一个VLAN内。
从 Alex Krizhevsky 及其朋友通过 ImageNet 公布这项技术至今,不过才七年。ImageNet 是一个大规模图像识别竞赛,每年都会举办,识别种类达 1000 多种,从阿拉斯加雪橇犬到厕纸应用尽有。之后,他们又创建了 AlexNet,获得了 ImageNet 竞赛冠军,远超第二名。
领取专属 10元无门槛券
手把手带您无忧上云