我们在上一篇文章初识 Pandas中已经对 Pandas 作了一些基本介绍,本文我们进一步来学习 Pandas 的一些使用。
Excel是我们职场打工人接触最多的办公室软件之一,当中会涉及到很多重复的操作,好在Python为我们提供了很多操作Excel的模块,能够帮助我们极大地提高工作效率,从琐碎的工作时间中抽出身来。
Pandas是Python数据分析处理的核心第三方库,它使用二维数组形式,类似Excel表格,并封装了很多实用的函数方法,让你可以轻松地对数据集进行各种操作。
一般我们做数据挖掘或者是数据分析,再或者是大数据开发提取数据库里面的数据时候,难免只能拿着表格数据左看右看,内心总是希望能够根据自己所想立马生成一张数据可视化的图表来更直观的呈现数据。而当我们想要进行数据可视化的时候,往往需要调用很多的库与函数,还需要数据转换以及大量的代码处理编写。这都是十分繁琐的工作,确实只为了数据可视化我们不需要实现数据可视化的工程编程,这都是数据分析师以及拥有专业的报表工具来做的事情,日常分析的话我们根据自己的需求直接进行快速出图即可,而Pandas正好就带有这个功能,当然还是依赖matplotlib库的,只不过将代码压缩更容易实现。下面就让我们来了解一下如何快速出图。
今天简单介绍一下Pandas可视化图表的一些操作,Pandas其实提供了一个绘图方法plot(),可以很方便的将Series和Dataframe类型数据直接进行数据可视化。
数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大的数据集。使用基于 Python 构建的开源机器学习库。你可以轻松导入和导出不同格式的数据。
作者:ROGER HUANG 本文翻译自:http://code-love.com/2017/04/30/excel-sql-python/ 来源:https://www.jianshu.com/p/51bb7726231b 本教程的代码和数据可在 Github 资源库 中找到。有关如何使用 Github 的更多信息,请参阅本指南。 数据从业者有许多工具可用于分割数据。有些人使用 Excel,有些人使用SQL,有些人使用Python。对于某些任务,使用 Python 的优点是显而易见的。以更快的速度处理更大
导读:我们介绍过用matplotlib制作图表的一些tips,感兴趣的同学可以戳→纯干货:手把手教你用Python做数据可视化(附代码)。matplotlib是一个相当底层的工具。你可以从其基本组件中组装一个图表:数据显示(即绘图的类型:线、条、框、散点图、轮廓等)、图例、标题、刻度标记和其他注释。
在您阅读这篇文章之前,您需要先了解以下内容:
直方图能帮助迅速了解数据的分布形态,将观测数据分组,并以柱状条表示各分组中观测数据的个数。简单而有效的可视化方法,可检测数据是否有问题,也可看出数据是否遵从某种已知分布。
Pandas是当前Python数据分析中最为重要的工具,其提供了功能强大且灵活多样的API,可以满足使用者在数据分析和处理中的多种选择和实现方式。今天本文以Pandas中实现分组计数这个最基础的聚合统计功能为例,分享多种实现方案,最后一种应该算是一个骚操作了……
Pandas是一个基于Numpy的数据分析库,它提供了多种数据统计和数据分析功能,使得数据分析人员在Python中进行数据处理变得方便快捷,接下来将使用Pandas对MovieLens 1M数据集进行相关的数据处理操作,运用具体例子更好地认识和学习Pandas在数据分析方面的独特魅力。
Numpy已经能够帮助我们处理数据,能够结合matplotlib解决部分数据展示等问题,那么pandas学习的目的在什么地方呢?
Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发team继续开发和维护,属于PyData项目的一部分。Pandas最初被作为金融数据分析工具而开发出来,因此,pandas为时间序列分析提供了很好的支持。 Pandas的名称来自于面板数据(panel data)和python数据分析(data analysis)。panel data是经济学中关于多维数据集的一个术
标题党一下,Python 程序员成千上万,当然有很多人学得会。这里说的“你”,是指职场中的非专业人员。 职场人员一般会用 Excel 处理数据,但也会有很多无助的情况,比如复杂计算、重复计算、自动处理等,再遇上个死机没保存,也常常能把人整得崩溃。如果学会了程序语言,这些问题就都不是事了。那么,该学什么呢? 无数培训机构和网上资料都会告诉我们:Python! Python 代码看起来很简单,只要几行就能解决许多麻烦的 Excel 问题,看起来真不错。 但真是如此吗?作为非专业人员,真能用 Python 来协助我们工作吗? 嘿嘿,只是看上去很美! 事实上,Python 并不合适职场人员,因为它太难了,作为职场非专业人员的你就学不会,甚至,Python 的难度可能会大到让你连 Python 为什么会难到学不会的道理都理解不了的地步。
在本章的每一节中,我们将使用第一章中的婴儿名称数据集。我们将提出一个问题,将问题分解为大体步骤,然后使用pandas DataFrame将每个步骤转换为 Python 代码。 我们从导入pandas开始:
本项目基于Kaggle电影影评数据集,通过这个系列,你将学到如何进行数据探索性分析(EDA),学会使用数据分析利器pandas,会用绘图包pyecharts,以及EDA时可能遇到的各种实际问题及一些处理技巧。
数据分类汇总与统计是指将大量的数据按照不同的分类方式进行整理和归纳,然后对这些数据进行统计分析,以便于更好地了解数据的特点和规律。
直方图是一个可以快速展示数据概率分布的工具,直观易于理解,并深受数据爱好者的喜爱。大家平时可能见到最多就是 matplotlib,seaborn 等高级封装的库包,类似以下这样的绘图。
链接:https://towardsdatascience.com/30-examples-to-master-pandas-f8a2da751fa4
Excel与Python都是数据分析中常用的工具,本文将使用动态图(Excel)+代码(Python)的方式来演示这两种工具是如何实现数据的读取、生成、计算、修改、统计、抽样、查找、可视化、存储等数据处理中的常用操作!
在第一第二课已经讲了notebook的基础使用,python的基础语法及常用的数据结构及其运算,包括:
cuDF (Pandas GPU 平替),用于加载、连接、聚合、过滤和其他数据操作。
教程地址:http://www.showmeai.tech/tutorials/33
许多组织都在尝试收集和利用尽可能多的数据,以改善其经营方式,增加收入和提升影响力。因此,数据科学家面对50GB甚至500GB大小的数据集情况变得越来越普遍。
Attitude is a little thing that makes a big difference.
这篇文章我们进行pandas可视化化的操作, 在这里我只是简单画几个图,表面pandas也是可以用来画图的,后期会在更新matlab等数据可视化的python库的。
首先构造数据,这里注意构造的是一维数组可以使用pandas中的Series,如果是二维数组使用DataFrame。
我的机器学习教程「美团」算法工程师带你入门机器学习 已经开始更新了,欢迎大家订阅~
一般在python进行数据分析/统计分析时,第一步总是对数据进行一些描述性分析、相关性分析,但是总会是有一大堆代码,那么今天就介绍一个神器pandas_profiling,一行命令就能搞定大部分描述性分析!
作者:笨熊 本章是使用机器学习预测天气系列教程的第一部分,使用Python和机器学习来构建模型,根据从Weather Underground收集的数据来预测天气温度。该教程将由三个不同的部分组成,涵盖的主题是: 数据收集和处理(本文) 线性回归模型(第2章) 神经网络模型(第3章) 本教程中使用的数据将从Weather Underground的免费层API服务中收集。我将使用python的requests库来调用API,得到从2015年起Lincoln, Nebraska的天气数据。 一旦收集完成,数据将需
import matplotlib.pyplot as plt import pandas as pd from pandas import Series, DataFrame
之前咱们介绍过Pandas可视化图表的绘制《『数据可视化』一文掌握Pandas可视化图表》,不过它是依托于matplotlib,因此无法进行交互。但其实,在Pandas的0.25.0版本之后,提供了一些其他绘图后端,其中就有我们今天要演示的主角基于Bokeh!
上一期咱们介绍《手把手教你用plotly绘制excel中常见的16种图表(上)》演示了8种常见图表,今天我们继续演示另外8种常见图表的绘制。
但是两者对比的还没有,今天我们尝试分别用pandas和plotnine作直方图、散点图。
数据质量分析是数据挖掘中数据准备过程的重要一环,是数据预处理的前提,也是数据挖掘分析结论有效性和准确性的基础,没有可信的数据,数据挖掘构建的模型将是空中楼阁。
数据通常被建模为一组实体,相关值的逻辑结构由名称(属性/变量)引用,并具有按行组织的多个样本或实例。 实体往往代表现实世界中的事物,例如一个人,或者在物联网中,是一个传感器。 然后,使用单个数据帧对每个特定实体及其度量进行建模。
*从本篇开始所有文章的数据和代码都已上传至我的github仓库:https://github.com/CNFeffery/DataScienceStudyNotes
本系列博客为基于《数据可视化第二版》一书的教学资源博客。本文主要是第8章,分布可视化的案例相关。
领取专属 10元无门槛券
手把手带您无忧上云