首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    pandas | 使用pandas行数据处理——DataFrame篇

    今天是pandas数据处理专题的第二篇文章,我们一起来聊聊pandas当中最重要的数据结构——DataFrame。...上一篇文章当中我们介绍了Series的用法,也提到了Series相当于一个一维的数组,只是pandas为我们封装了许多方便好用的api。...常用操作 下面介绍一些pandas的常用操作,这些操作是我在没有系统学习pandas的使用方法之前就已经了解的。了解的原因也很简单,因为它们太常用了,可以说是必知必会的常识性内容。...查看数据 我们在jupyter当中执行运行DataFrame的实例会为我们打出DataFrame中所有的数据,如果数据行数过多,则会以省略号的形式省略中间的部分。...在Python领域当中,pandas是数据处理最好用的手术刀和工具箱,希望大家都能将它掌握。

    3.5K10

    使用pandas行数据快捷加载

    导读:在已经准备好工具箱的情况下,我们来学习怎样使用pandas对数据进行加载、操作、预处理与打磨。 让我们先从CSV文件和pandas开始。...如果想要输出不同的行数,调用函数时只需要设置想要的行数作为参数,格式如下: iris.head(2) 上述命令只输出了数据的前两行。...还可以通过索引得到列的列表,如下所示: x =iris[[ ‘sepal_length’,‘sepal_width’ ]] x 输出: [150 rows x 2 columns] 以下是X数据集的前4行数据...以下是X数据集的后4行数据: ? 在这个例子中,得到的结果是一个pandas数据框。为什么使用相同的函数却有如此大的差异呢?...本文摘编自《数据科学导论:Python语言》(原书第3版) 延伸阅读《数据科学导论:Python语言》 推荐语:数据科学快速入门指南,全面覆盖进行数据科学分析和开发的所有关键要点。

    2.1K21

    使用Pandas行数据分析

    Pandas Pandas这个Python库是专为数据分析设计的,使用它你可以快速地对数据进行处理。如果你用过R语言或其他技术进行过数据分析,那么你会感觉pandas的使用简单而熟悉。...例子:糖尿病发病情况分析 首先,我们需要一个数据集,这个数据集将被用于练习使用pandas行数据分析。...数据描述 我们现在可以看看数据的整体情况: 可以直接通过print来查看前60行数据 print(data) 我们可以看到,所有的数据都是numeric类型的,而最后一列的类别(class)值即是我们要预测的因变量...总结 在这篇文章中我们已经涵盖了使用pandas行数据分析的很多地方。 首先,我们着眼于如何快速而简便地载入CSV格式的数据,并使用汇总统计来描述它。...接下来,我们研究使用了各种不同的方法来进行数据可视化,通过可视化图标我们发掘了数据中的更多有趣的信息,并且研究了数据在箱线图和直方图中的分布。

    3.4K50

    Python进行数据分析Pandas指南

    本文将介绍如何结合Pandas和Jupyter Notebook进行数据分析,并提供一些示例来演示它们的强大功能。安装和设置首先,确保你已经安装了Python和Jupyter Notebook。...进行数据分析Pandas提供了一个称为DataFrame的数据结构,它类似于电子表格或数据库表格。...通过这个完整的案例,我们展示了如何使用Pandas和Jupyter Notebook进行数据分析,从数据加载到可视化展示再到结果导出的全过程。这种结合为数据分析工作提供了极大的便利和效率。...总结本文介绍了如何利用Python中的Pandas和Jupyter Notebook进行数据分析,并提供了多个示例来展示它们的强大功能。...随后,我们展示了如何在Jupyter Notebook中结合Pandas进行交互式分析,以及如何利用Matplotlib和Seaborn等库进行数据可视化。

    1.4K380

    Pandas行数据处理系列 二

    获取指定的列和行 import pandas as pd df = pd.read_csv('xxxx.xls') 获取行操作df.loc[3:6]获取列操作df['rowname']取两列df[['...[‘b’].unique()查看某一列的唯一值df.values查看数据表的值df.columns查看列名df.head()查看默认的前 10 行数据df.tail()查看默认的后 10 行数据 数据表清洗...loc函数按标签值进行提取iloc按位置进行提取ix可以同时按标签和位置进行提取 具体的使用见下: df.loc[3]按索引提取单行的数值df.iloc[0:5]按索引提取区域行数据值df.reset_index...df.groupby(‘city’).count()按 city 列分组后进行数据汇总df.groupby(‘city’)[‘id’].count()按 city 进行分组,然后汇总 id 列的数据df.groupby...as pd df = pd.DataFrame([[4, 9], ]*3, columns=list('AB')) print(df) import pandas as pd import numpy

    8.1K30
    领券