首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    推荐|雷达和卫星的气象深度学习应用最佳实践

    深度学习已经在气象领域显示出很好的应用前景,并且已经在降水短临预报、雷达图像生成、锋面检测等方面取得了不错的进展。为了更有效的训练和验证这些复杂的算法,需要大量多样化的高分辨率数据集。目前有很多公开的PB级天气数据,比如静止气象卫星、天气雷达等。然而,这些数据集的大小和复杂性阻碍了深度学习模型的训练。为了解决此问题,引入了雷暴事件图像数据集(Storm EVent ImagRy, SEVIR)。此数据集包含了来自多个传感器的时空一致的数据。除了数据集外,还提供了深度学习模型作为基准模型和模型评估指标,以进一步加速深度学习新算法的创新。

    07

    Google Earth Engine(GEE)—— 加拿大陆地卫星得出的1985-2020年森林采伐扰动情况

    加拿大陆地卫星得出的1985-2020年森林采伐扰动情况 本产品所包含的年度森林变化数据是全国性的(整个森林生态系统),代表了加拿大在30米空间分辨率下的墙到墙的采伐特征。信息成果代表了加拿大森林36年的采伐变化,来自一个单一的、一致的、空间明确的数据源,以完全自动化的方式得出。这种在捕捉人类影响的分辨率下描述森林特征的能力,对于从管理和科学的角度建立详细监测森林生态系统的基线至关重要。Landsat数据的时间序列被用来描述1985-2020年期间加拿大6.5亿公顷森林生态系统中由野火和采伐造成的林木替代森林干扰的国家趋势。前言 – 床长人工智能教程

    01
    领券