您可以通过OpenCV函数cv.add()或仅通过numpy操作res = img1 + img2添加两个图像。两个图像应具有相同的深度和类型,或者第二个图像可以只是一个标量值。
前言 前一段时间用于人物换脸的deepfake火爆了朋友圈,早些时候Cycle GAN就可以轻松完成换脸任务,其实换脸是计算机视觉常见的领域,比如Cycle GAN ,3dmm,以及下文引用的论文均可以使用算法实现换脸(一定程度上能模仿表情),而不需要使用PS等软件手工换脸(表情僵硬,不符合视频上下文),只能说deepfake用一个博取眼球的角度切入了换脸算法,所以一开始我并没有太过关注这方面,以为是Cycle GAN干的,后来隐约觉得不对劲,因为GAN系列确实在image to image领域有着非凡的成
在【快速阅读二】从OpenCv的代码中扣取泊松融合算子(Poisson Image Editing)并稍作优化 一文的最后,我曾经提到有个使用泊松融合来来实现Seamless Tiling的效果,我自己尝试去实现,暂时没有获取正确的结果,论文里给出的效果如下:
前一段时间用于人物换脸的deepfake火爆了朋友圈,早些时候Cycle GAN就可以轻松完成换脸任务,其实换脸是计算机视觉常见的领域,比如Cycle GAN ,3dmm,以及下文引用的论文均可以使用算法实现换脸(一定程度上能模仿表情),而不需要使用PS等软件手工换脸(表情僵硬,不符合视频上下文),只能说deepfake用一个博取眼球的角度切入了换脸算法,所以一开始我并没有太过关注这方面,以为是Cycle GAN干的,后来隐约觉得不对劲,因为GAN系列确实在image to image领域有着非凡的成绩,但GAN的训练是出了名的不稳定,而且收敛时间长,某些特定的数据集时不时需要有些trick,才能保证效果。但deepfake似乎可以无痛的在各个数据集里跑,深入阅读开源代码后(https://github.com/deepfakes/faceswap),发现这东西很多值得一说的地方和优化的空间才有了这一篇文章。 本文主要包括以下几方面: 1.解读deepfake的model和预处理与后处理的算法以引用论文。(目前大多文章只是介绍了其中的神经网络,然而这个项目并不是单纯的end-to-end的输出,所以本文还会涉及其他CV的算法以及deepfake的介绍)。 2.引入肤色检测算法,提升换脸的视觉效果。
本文主要介绍如何使用OpenCV给图片和视频添加彩虹特效,给平淡的生活增添点色彩。
你可以用OpenCV函数cv.add()将两幅图像相加,或者简单地用numpy操作res = img1 + img2。两幅图像应该是相同的深度和类型,或者第二幅图像可以只是一个标量值。
如今,随着技术的不断进步,“变脸”技术不再是四川喜剧的“独门武功”。运用机器学习的方法,我们同样可以实现人脸“融合”。当然这里说的人脸融合指的是将两个人的人脸照片进行融合,至于融合的比例,要按照自己的喜好来定。人脸融合的效果我们先看视频。
Python牛已经不是一天两天的事了,但是我开始也没想到,Python能这么牛。前段时间接触了一个批量抠图的模型库,而后在一些视频中找到灵感,觉得应该可以通过抠图的方式,给视频换一个不同的场景,于是就有了今天的文章。
该系列文章是讲解Python OpenCV图像处理知识,前期主要讲解图像入门、OpenCV基础用法,中期讲解图像处理的各种算法,包括图像锐化算子、图像增强技术、图像分割等,后期结合深度学习研究图像识别、图像分类、目标检测应用。
Python是一种通用的编程语言,在分析数据方面非常流行,它还可以让帮助我们快速工作并更有效地集成系统。
参数说明: cv2.add将两个图片对应位置的像素的值相加,或者将每个像素的值加上一个标量值,大于255的像素值就设置成255。
我们在一些相机APP的功能里会看到有把照片转换为素描效果的,看起来就很高大上的感觉,今天我们也用OpenCV实现一下这个效果。
本小节主要介绍色彩空间的一些概念,并使用OpenCV进行色彩空间的转换,并通过通过色彩空间的转换提取视频中的指定颜色。
图片就是矩阵,图片的加法运算就是矩阵的加法运算,这就要求加法运算的两张图片的shape必须是相同的。
本部分介绍的两个思路都是基于opencv来实现,不涉及深度学习相关内容(需要安装opencv-python库,参见 OpenCV-Python,计算机视觉开发利器)。基本思想是读入一张照片图,然后通过各种变换转化成素描图。为了演示方便,我们先找来一张小姐姐的照片作为实验素材。
可以通过OpenCV函数cv.add()或简单地通过numpy操作添加两个图像,res = img1 + img2.两个图像应该具有相同的深度和类型,或者第二个图像可以是标量值.
近年来随着机器学习等技术的发展,人工智能在图像识别、语音处理等方面的能力不断增强、应用范围不断扩大,这极大的方便了人们的生活。然而随之带来的安全问题也变得越来越不可忽视。
以上章节采免安装方式,所以安装章节可以直接跳过,节约点时间用springboot整合OpenCV(也可以用maven项目或者简单的java项目),主要是引入一个jar包和库文件,jar跨平台,库文件不跨平台,所以要区分windows和linux,至于工具idea就ok. 环境安装可以参考:springboot免安装整合Opencv兼容windows和linux
来源:机器学习AI算法工程、知乎@Now more本文约5500字,建议阅读15分钟本文为你介绍 以薏仁米作物识别以及产量预测为比赛命题,及对对应获奖的开发算法模型。 农作物的资产盘点与精准产量预测是实现农业精细化管理的核心环节。当前,我国正处于传统农业向现代农业的加速转型期,伴随着农业的转型升级,政府宏观决策、社会各界对农业数据的需求不断增加,现有农业统计信息的时效性与质量,已不足以为市场各主体的有效决策提供科学依据。在农作物资产盘点方面,传统的人工实地调查的方式速度慢、劳动强度大,数据采集质量受主观因素
原理:图像数据格式为unit8 8位二进制表示范围是0到255。 二进制相加 1.不超过255的,如100+58=158 2.两数相加可能超过255,超过255的取模运算 如255+58=(255+58)%255=58
说到这个技术,很多人可能很陌生,但是当提到 AI 人脸识别,AI 换脸,AI 算命,人脸美化等技术,相信都不陌生了。
『音视频技术开发周刊』由LiveVideoStack团队出品,专注在音视频技术领域,纵览相关技术领域的干货和新闻投稿,每周一期。点击『阅读原文』,浏览第55期内容,祝您阅读愉快。 策划 / LiveVideoStack 架构 展晓凯:“零经验”的我与唱吧从零到四亿 正如展晓凯总结的那样,一个技术人或团队的成功离不开业务打下的基础,业务高层的高瞻远瞩以及对技术的敬畏,以及技术人的学习与探索精神。LiveVideoStack对全民快乐研发高级总监展晓凯进行了邮件采访,他总结了在与唱吧从零成长的历程。作为一个
介绍了卡尔曼滤波的由来和原理,我们在这儿一句话总结一下,大家如果有不懂的可以去看上篇文章:
绝缘手套穿戴智能识别系统通过opencv+python深度学习技术,绝缘手套穿戴智能识别系统对现场人员是否佩戴绝缘手套进行识别检测,当绝缘手套穿戴智能识别系统检测到现场人员违规行为未佩戴绝缘手套时立刻抓拍告警。我们使用YOLO(你只看一次)算法进行对象检测。YOLO是一个聪明的卷积神经网络(CNN),用于实时进行目标检测。该算法将单个神经网络应用于完整的图像,然后将图像划分为多个区域,并预测每个区域的边界框和概率。这些边界框是由预测的概率加权的。要理解YOLO,我们首先要分别理解这两个模型。
点击上方↑↑↑“OpenCV学堂”关注我来源:公众号 量子位 授权 让3D动画小人做一套丝滑的动作,需要手动渲染多久? 现在交给AI,输入几句话就能搞定(不同颜色代表不同动作): 看向地面并抓住高尔夫球杆,挥动球杆,小跑一段,蹲下。 此前,AI控制的3D人体模型基本只能“每次做一个动作”或“每次完成一条指令”,难以连续完成指令。 现在,无需剪辑或编辑,只需按顺序输入几条命令,3D人物就能自动完成每一套动作,全程丝滑无bug。 这只新AI的名字叫TEACH,来自马普所和古斯塔夫·艾菲尔大学。 网友们脑
2004 年 SIGGRAPH 上,Microsoft Research UK 有篇经典的图像融合文章《Poisson Image Editing》。先看看其惊人的融合结果(非论文配图,本人实验结果):
哈哈,今天说得当然不是游戏王里的魔法了,但是我们使用的是Python魔法,今天我们将使用Python编程语言,以及自带的图像处理工具包进行图像融合操作,来实现图像融合的酷炫效果!
向AI转型的程序员都关注了这个号👇👇👇 机器学习AI算法工程 公众号:datayx 农作物的资产盘点与精准产量预测是实现农业精细化管理的核心环节。当前,我国正处于传统农业向现代农业的加速转型期,伴随着农业的转型升级,政府宏观决策、社会各界对农业数据的需求不断增加,现有农业统计信息的时效性与质量,已不足以为市场各主体的有效决策提供科学依据。在农作物资产盘点方面,传统的人工实地调查的方式速度慢、劳动强度大,数据采集质量受主观因素影响大,统计数据有较大的滞后性,亟待探索研究更高效准确度更高的农业调查统计技术。
AI 科技评论按,本文作者成指导,字节跳动算法工程师,本文首发于知乎(https://zhuanlan.zhihu.com/p/68349210),AI 科技评论获其授权转载,正文内容如下:
颜如玉 —— python + opencv 人脸融合程序,可实现类似天天P图疯狂换脸、face++人脸融合效果
今天是关于图像合并相关的讲解。首先要区分一下图像合并与图像融合的概念:图像融合说的是两幅不同的图片的叠加,而图像合并说的是将两幅图像经过大小调整实现并排的效果。
色彩空间又可以叫做色域,英文是Color Sapce,是一种人为建立,用于表示色彩的一种“坐标系统”,或者说是一种色彩访问的取值系统,用于描述色彩。了解色彩空间对我们今后使用opencv进行图像处理很重要,在今后对图像处理时将会涉及到色彩空间的内容,所以学习了解色彩空间是有必要的。
在文本检测任务中,较少出现字符重合的情况(重合的字符人也认不出来啊),所以基于分割思想的文本检测算法也能得到很好的效果。
OpenCV提供了cv2.createStitcher (OpenCV 3.x) 和 cv2.Stitcher_create(OpenCV 4) 这个拼接函数接口,对于其背后的算法,尚未可知(该函数接口是调用其它的C语言进行实现),查阅官方文档,并未找到完全对应上的内容。因此,下文主要偏向于实践。
像素:一张图片在不停的放大到再也无法放大的时候,呈现在我们眼前的是一个个小的颜色块,这种带有颜色的小方块就可以被称为像素
要叠加两张图片,可以用cv2.add()函数,相加两幅图片的形状(高度/宽度/通道数)必须相同。numpy中可以直接用res = img + img1相加,但这两者的结果并不相同:
Ai检测人员穿衣规范系统通过opencv+yolo深度学习技术对现场画面中人员穿衣自动检测,Ai检测人员穿衣规范系统发现现场人员未正确按要求穿衣进行抓拍留档。OpenCV可以在不同的系统平台上使用,包括Windows,Linux,OS,X,Android和iOS。基于CUDA和OpenCL的高速GPU操作接口也在积极开发中。OpenCV基于C++实现,同时提供python, Ruby, Matlab等语言的接口。OpenCV-Python是OpenCV的Python API,结合了OpenCV C++API和Python语言的最佳特性。
这是一篇来自PyImageSearch的Adrian Rosebrock的博客,他的博客内容包括计算机视觉,图像处理和建筑图像搜索引擎等。
1999年,英特尔的 Gary Bradsky 发起了 OpenCv 项目,并于 2000 年发布第一个版本。2005年,OpenCv 被首次应用在 Stanley,这也是赢得同年 DARPA 大挑战赛的车型。如今,OpenCv 除了支持计算机视觉,还增加了众多机器学习相关算法,未来还将持续扩展。
煤炭传送带状态检测系统通过Python+OpenCv机器视觉边缘分析技术对煤炭皮带状况进行实时监测,一旦煤炭传送带状态检测系统Python+OpenCv监测到皮带跑偏、堆煤、撕裂、异物等其他情况,煤炭传送带状态检测系统马上开展警报提醒,通知后台监控平台,并提醒相关人员及时处置。
前两天看到篇介绍英伟达StyleGAN生成逼真假脸的文章,其源码正是通过Python和Tensorflow实现的,利用AI生成并不存在的头像图,来感受下:
本篇开始,将进入图像配准领域的研究。 图像拼接主要有SIFT, BRISK, ORB, AKAZE等传统机器学习算法以及SuperPoint等深度学习算法,在后续将一一进行研究和实验。本篇主要来研究SIFT算法的原理和应用。
手机端运行卷积神经网络的一次实践 — 基于 TensorFlow 和 OpenCV 实现文档检测功能 1. 前言 本文不是神经网络或机器学习的入门教学,而是通过一个真实的产品案例,展示了在手机客户端上运行一个神经网络的关键技术点 在卷积神经网络适用的领域里,已经出现了一些很经典的图像分类网络,比如 VGG16/VGG19,Inception v1-v4 Net,ResNet 等,这些分类网络通常又都可以作为其他算法中的基础网络结构,尤其是 VGG 网络,被很多其他的算法借鉴,本文也会使用 VGG16 的基础
转载自丨3d tof 原文地址:在OpenCV中基于深度学习的边缘检测 推荐阅读:普通段位玩家的CV算法岗上岸之路(2023届秋招)
把一些相关的知识点总结一下。这个比长,感兴趣的挑自己相关的那部分看。 都是一些基础知识,面相关岗位问到的比较多。 (回答时对算法要有一定的见解,最好不要照书上的背) (一) 机器学习方面 SVM 1、 支撑平面---和支持向量相交的平面;;;分割平面---支撑平面中间的平面(最优分类平面) 2、 SVM不是定义损失,而是定义支持向量之间的距离à目标函数看PPT13~17页 3、 正则化参数对支持向量数的影响 LR 1、 LR的形式:h(x)=g(f(x));其中x为原
河道船舶识别检测系统通过ppython+YOLOv5网络模型算法技术,河道船舶识别检测系统对画面中的船只进行7*24小时实时监测,若发现存在进行违规采砂或者捕鱼立即自动抓拍触发告警。与C / C++等语言相比,Python速度较慢。也就是说,Python可以使用C / C++轻松扩展,这使我们可以在C / C++中编写计算密集型代码,并创建可用作Python模块的Python包装器。这给我们带来了两个好处:首先,代码与原始C / C++代码一样快(因为它是在后台工作的实际C++代码),其次,在Python中编写代码比使用C / C++更容易。OpenCV-Python是原始OpenCV C++实现的Python包装器。Python是一种由Guido van Rossum开发的通用编程语言,它很快就变得非常流行,主要是因为它的简单性和代码可读性。它使程序员能够用更少的代码行表达思想,而不会降低可读性。
领取专属 10元无门槛券
手把手带您无忧上云