即使现在互联网已经渗透到我们生活的方方面面,但它依然只是现实的物理世界在虚拟的网络空间上按比特信息编码后的投射。
编辑导语 Udesk成为SaaS客服领域第一个获可信服务云认证客服; 美洽 SDK 新增访客查看范围限制功能; 仅创业197天,智齿客服获上万客户领军SaaS智能客服企业; 捷通华声推出灵云全能力平台
当我们正讨论如何用AI推动产业升级、改变未来生活时,不法分子也在研究AI技术,并通过各种手段非法牟利。近日,腾讯守护者计划安全团队协助警方打掉市面上最大打码平台“快啊答题”,挖掘出一条从撞库盗号、破解验证码到贩卖公民信息、实施网络诈骗的全链条黑产。而在识别验证码这一关键环节,黑产竟已用上AI人工智能技术。该团伙运用AI技术训练机器,极大提升了单位时间内识别验证码的数量,2017年一季度打码量达到259亿次,且识别验证码的精准度超过80%。借此案件,我们也深入研究AI打码平台黑产领域,对其犯罪模式进行剖析。
原理:向服务端请求,生成随机的字符,写入会话请求,同时将随机字符生成对应图片,响应给前端;前端输入对应字符的验证码,向后台发起校验。
reCAPTCHA的诞生及意义 CMU(卡耐基梅隆大学)设计了一个名叫reCAPTCHA的强大系统,让电脑去向人类求助。具体做法是:将OCR(光学自动识别)软件无法识别的文字扫描图传给世界各大网站,用以替换原来的验证码图片;那些网站的用户在正确识别出这些文字之后,其答案便会被传回CMU。 reCAPTCHA是利用CAPTCHA的原理(CAPTCHA的中文全称是全自动区分计算机和人类的图灵测试),借助于人类大脑对难以识别的字符的辨别能力,进行对古旧书籍中难以被OCR识别的字符进行辨别的技术。也就是说,reCA
1 图像采集:就直接通过HTTP抓HTML,然后分析出图片的url,然后下载保存就可以了
Python现在非常火,语法简单而且功能强大,很多同学都想学Python!所以小的给各位看官们准备了高价值Python学习视频教程及相关电子版书籍,欢迎前来领取!
本月底,谷歌Google即将停止全球图片验证码服务,这个困扰我们多年的验证码终于要退出历史的舞台了。官方宣告可以看以下截图:
03月16日上午,12306网站更新了自己的验证码形式,将原有的验证码从英文字符变换到8张小图片,用户必须根据问题提示来点击选中正确的图片,然后才能预定车票。紧接着,各路媒体开始发稿,《12306官网放大招:启用图片验证码所有抢票软件将失效》《12306官网推出全新图片验证码抢票软件将失效》等新闻层出不穷。作为一个程序员,看到这样的标题,十分困惑这些媒体是怎么用上帝视角这么直接断定抢票软件将全部失效的,可以想象一大波刷票公司正准备捋起袖子干活就直接听到12306宣布自己胜利了。当然,我们反对一切的黄牛党,本
最近在学习人工智能方面的东西,先从简单通俗的人文开始,以后再决定是否学习硬核的算法和程序实现。前两周看了一本《智能时代》,感觉还想再多了解一下,于是就又买了这本书。
来源: j_hao104 my.oschina.net/jhao104/blog/647326 一、探讨 识别图形验证码可以说是做爬虫的必修课,涉及到计算机图形学,机器学习,机器视觉,人工智能等等高深领域…… 简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。计算机涉及到的几何图形处理一般有 2维到n维图形处理,边界区分,面积计算,体积计算,扭曲变形校正。
一、探讨 识别图形验证码可以说是做爬虫的必修课,涉及到计算机图形学,机器学习,机器视觉,人工智能等等高深领域…… 简单地说,计算机图形学的主要研究内容就是研究如何在计算机中表示图形、以及利用计算机进行图形的计算、处理和显示的相关原理与算法。图形通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。计算机涉及到的几何图形处理一般有 2维到n维图形处理,边界区分,面积计算,体积计算,扭曲变形校正。对于颜色则有色彩空间的计算与转换,图形上色,阴影,色差处理等等。 在破解验证码中需要用到的知识
在今天最开始的时候,我们来做个小调研; 很多人对人工智能存在一定的误解,不知道它是什么,能够做什么。其实人工智能已经存在我们生活的方方面面。也许你刚才还有用到呢! 下面小编带大家来了解下我们日常生活中最常见的一些人工智能! 人工智能+疫情期出入证 应用产品:腾讯云卡证OCR 实现原理:卡证文字识别,自动识别并录入各字段信息,降低用户输入成本,有效提升用户体验。 落地项目:疫情期间,各大社区通过使用卡证OCR,让用户在家通过上传证件-识别信息-完成在线办理通行证,极大的缓解了办理通行证的压力,提升了用户
验证码,全称为“Completely Automated Public Turing test to tell Computers and Humans Apart”,即全自动区分计算机和人类的图灵测试,Captcha。早在上个世纪90年代,为了防止恶意的网络机器人行为,像邮件轰炸、暴力破解密码等,验证码应运而生。
这是一种比较简单粗暴的方式啊,首先如果没有验证码的需求的话,碧如我之前爬CSDN抓到自己的个人信息那次。这种方式就很好了。
在Python爬虫中,或者使用POST提交的过程中,往往需要提交验证码来验证,除了人工打码,付费的api接口(打码接口),深度学习识别验证码,当然还有适合新人使用的OCR验证码识别库,简单的验证码是可以完全实现自动打码的,比如下面本渣渣分享的通用验证码自动识别库:ddddocr(带带弟弟OCR)!
关于图文识别功能相关技术的实现 转载请注明源地址:http://www.cnblogs.com/funnyzpc/p/8908906.html 上一章,写的是SSL证书配置,中间折腾了好一会,在此感谢SSL证书发行商的协助;这次我就讲讲ocr识别的问题,先说说需求来源吧。。。 之前因为风控每次需要手动P协议文件和身份证(脱敏),还要识别证件及图片文件的内容,觉得狠狠狠麻烦,遂就找到了技术总监,技术总监一拍脑袋,额,小邹啊。。。 呃,一开始并没抱太大希望,不过还是花了些心思做了些需求实现的调研
转载请注明源地址:http://www.cnblogs.com/funnyzpc/p/8908906.html
公司的应用为了加强安全性,在登陆时增加了验证码。这对自动化来说,增加了不少难度。 曾经尝试用各种方法来解析验证码,识别率都不高。 后面我找到了一个新出的解析验证码包,叫muggle_ocr, 是基于人工智能的,解析效果还不错。 首先安装模块
作者简介 闵杰, 携程信息安全部产品经理。2015年加入携程,主要负责黑产防刷,验证码,反爬以及UGC方面的产品设计,关注在低成本的前提下,解决以上场景的实际问题。 从互联网行业出现自动化工具开始,验证码就作为对抗这些自动化尝试的主要手段登场了,在羊毛党,扫号情况层出不穷的今天,验证码服务的水平也直接决定一家互联网企业的安全系数。作为WEB看门人,它不仅仅要做到安全,也要兼顾体验。 本文将分享携程信息业务安全团队在这几年里,对图形验证码服务所做的一些大大小小的改变。各位可以将本文作为自身网站图形验证码搭建的
2018年全国硕士研究生招生考试预报名的第一天,成都大学的一名大四女生,在网上报名时,竟出现了“别考”字样的验证码,同时在验证码上边显示一行红字:您输入的用户名或密码有误。专门负责全国研究生报名的“中国研究生招生信息网”相关负责人回应说,验证码出现“别考”字样纯属巧合。
Dev Club 是一个交流移动开发技术,结交朋友,扩展人脉的社群,成员都是经过审核的移动开发工程师。每周都会举行嘉宾分享,话题讨论等活动。 本期,我们邀请了 腾讯 TEG 安全平台部的张彦玲、陈秋滢、华珊珊三位嘉宾,为大家分享《腾讯验证码的十二年》。 内容简介: 验证码的诞生就是用来对抗自动机,但随着OCR技术的发展,腾讯验证码怎么发展让它能够有效持续对抗自动机。 ---- 以下为本期分享实录: 大家好,我是张彦玲,来自腾讯TEG安全平台部,现在负责验证码研发工作。今天还有我们两位同事:陈秋滢和华珊珊,大
今天要给大家介绍的是验证码的爬取和识别,不过只涉及到最简单的图形验证码,也是现在比较常见的一种类型。
还记得你上次收到假发票时的情形吗? 作为财务人员或者审核报销人员,你还在这样进行发票真伪的核验吗? 登录国家或者地方税务局网站,输入发票代码、发票号码、密码以及验证码四要素,一张发票核验需要手工输入4次信息。查验一张发票需要2~3分钟,如果不熟练或者网速慢,至少花5分钟才能完成。耗时耗力,出错率高,人工成本大。 人工智能时代,为助力财务人员更加快速、高效的对发票信息进行核验、录入、存档,腾讯云OCR为广大企业用户提供了票据单据识别与增值税发票核验接口,用户接入API接口后,只需上传发票照片,就可以自动
人机验证服务是突破传统验证码的人机识别产品,通过对用户的行为数据、设备特征与网络数据构建多维度数据分析,可以对风险设备使用、模拟行为、暴力重放等攻击进行综合判决,解决企业账号、活动、交易等关键业务环节存在的欺诈威胁问题。早期的验证码通常是一串非常简单的形状标准的数字,经过长期发展,形式越来越多样化,现在简单的数字英文验证码已经很容易被机器读取破解,复杂的验证码设计得愈发反人类。不过得益于机器学习,尤其是深度学习的进步,很多学者和技术大牛都这方面有了一些研究成果,本文将对已有的一些人机验证绕过技术进行总结。
刚开始在网上看别人一直在说知乎登入首页有有倒立的汉字验证码,我打开自己的知乎登入页面,发现只有账号和密码,他们说的倒立的验证码去哪了,后面仔细一想我之前登入过知乎,应该在本地存在cookies,然后我将cookies删除掉果然就有需要验证码了:
众所周知,验证码的出现是为了区分人和机器,但随着科技的发展,黑产从业者的可图之利增多,验证码的战场也进入了一段破解与抗破解的持久博弈。
若问目前IT领域最炙手可热的技术方向,必属人工智能(简称AI)无疑。前有谷歌的阿法狗完胜围棋世界冠军柯洁,后有微软小冰出版了诗集《阳光失了玻璃窗》,一时间沸沸扬扬,似乎人工智能无所不能,从而掀起了人民大众了解和关注AI的大潮。 虽然人工智能看起来仿佛刚刚兴起,但是它的相关产品早已普遍应用,在工业制造领域,有越来越多的机器人用于自动化生产;在家庭生活领域,则有智能锁、扫地机器人等助力智能家居。这些智能产品的背后,离不开人工智能的几项基本技术,包括计算机视觉、自然语言处理、数据挖掘与分析等等。这几项技术的应用说明如下: 1、计算机视觉,包括图像识别,视频识别等技术,可应用于指纹识别、人脸识别、无人驾驶汽车等等; 2、自然语言处理,包括音频识别、语义分析等技术,可应用于机器翻译、语音速记、信息检索等等; 3、数据挖掘与分析,包括大数据的相关处理技术,可应用于商品推荐、天气预报、红绿灯优化等等; 上述的几个人工智能应用,看似牛逼,可是这跟Android开发有什么关系呢?其实手机App很早就用上了相关的智能技术,还记得12306网站的神奇验证码吧,买张热点地区的火车票一直是个老大难,常常在火车站售票窗口排了许久的队伍,终于排到你的时候却发现目的地的火车票卖光了。特别是春运的时候,即使不到售票窗口排队,而是到12306网站买票,也常常因为各种操作问题贻误下单,于是各种抢票插件应运而生,帮助用户自动登录、自动选择乘车日期和起止站点、自动下单抢票。抢票插件的核心功能之一,便是自动识别登录过程中的验证码图片,原本这个验证码图片是用来阻止程序自动登录的,然而道高一尺魔高一丈,任你采取图片验证码又如何,抢票插件照样能够识别出图片所呈现出来的形状。注意,这里提到的识别图片中的验证码,即为人工智能的一项初级应用。 验证码图片识别,最简单的是数字验证码,因为数字只有从0到9一共十个字符,并且每个数字的形状也比较简单,所以本文就从数字验证码的识别着手,拨开高大上的迷雾,谈谈人工智能的初级应用。 先来看看一张再普通不过的验证码图片:
在我们写爬虫的过程中,目标网站常见的干扰手段就是设置验证码等,本就将基于Selenium实战讲解如何处理弹窗和验证码,爬取的目标网站为某仪器预约平台
现在很多网站都会使用验证码来进行反爬,所以为了能够更好的获取数据,需要了解如何使用打码平台爬虫中的验证码
要说 reCAPTCHA,就要先说一说 CAPTCHA,全称是 Completely Automated Public Turing test to tell Computers and Humans Apart,即全自动区分计算机和人类的图灵测试,也就是通常说的 “验证码”,目的就是要把计算机和人区分开来。在互联网站上,为了防止不安全的、重复暴力的登陆密码破解等操作,需要使用验证码来将机器行为拒之门外。
验证码分析:图片上有折线,验证码有数字,有英文字母大小写,分类的时候需要更多的样本,验证码的字母是彩色的,图片上有雪花等噪点,因此识别改验证码难度较大。
最近在抓取亚某逊的时候, 除了随机请求头之外, 还有时不时出现的验证码页面, 原来换个ip还可以, 但是时间长了, 出现的越来越频繁, 所以这次就来彻底解决这个验证码的问题
据《科学》(Science)杂志2017年10月报道,一家名为Vicarious的人工智能公司开发的人工智能算法攻破了被人们广泛使用的CAPTCHAs验证码。 CAPTCHAs(Completely Automated Public Turing Test To Tell Computers and Humans Apart,全自动区分计算机和人类的图灵测试)是目前最常用的一种验证码,通常由一组混乱的字符、波浪线和其他背景噪声组成。例如,在你报名参加一个时事通讯或购买音乐会门票之前,可能会被要求输入这些字符
背景 智慧金融在金融服务的业务流程中不断深入,金融行业数字化建设的过程除了面向外部客户的服务与销售外,行业内部的支持性系统也在随之升级。智能合规、智能运营广泛应用于企业内部财务管理系统、报销系统、核算系统以及审核系统等平台中,促使数据沉淀,加速流程效率,实现数字化建设闭环。 在智能运营覆盖的各个场景中,计算机视觉、自然语言处理、传统机器学习算法等人工智能技术充分应用。其中文字识别技术(OCR)作为计算机视觉的主要方向之一,其识别对象包括扫描合同、印章、卡证、表格与票据信息结构化,在业务办理、风险控制、内部数
12306验证码,长时间高居反人类产品排行榜第一名,普通人一次通过率仅8%,人也识别不清的图片就能成功阻挡自动机了吗?谷歌街景验证码完全取自自然环境确保图片的不重复不被爆破,但是面对黑产的巨额利润,又能坚持多久?本文通过仿黑产破解的手法去重新思考验证码产品发展方向
在数据抓取和网络爬虫技术中,验证码是常见的防爬措施,特别是嘈杂文本验证码。处理嘈杂验证码是一个复杂的问题,因为这些验证码故意设计成难以自动识别。本文将介绍如何使用OCR技术提高爬虫识别嘈杂验证码的准确率,并结合实际代码示例,展示如何使用爬虫代理IP技术来规避反爬措施。
作者:常佩琦 【新智元导读】春运已到达高峰期,不少浏览器推出了人工智能抢票和选座功能。而黄牛党也与时俱进,用机器人和AI恶意刷票。如何应对这种现象?专家表示可利用机器学习来阻击黄牛党。 又到了一年一度的春运大战。与往年不同的是,AI在今年的春运大战中扮演了重要角色。 据悉,今年春运全国旅客发送量预计将达到30亿人次,预计铁路、民航分别增长8.8%和10%。如此庞大的返乡人群,加大了购票的难度。而12306利用稀奇古怪的图像验证码来防止黄牛党恶意刷票,结果却苦了正常购票的用户。 不断有网友吐槽,12306网站
导读:12306验证码,长时间高居反人类产品排行榜第一名(据某网站调查),普通人一次通过率仅8%,人也识别不清的图片就能成功阻挡自动机了吗?谷歌街景验证码完全取自自然环境确保图片的不重复不被爆破,但是面对黑产的巨额利润,又能坚持多久?本文由安全平台部的shisi撰写,试图通过模仿黑产的破解手法去重新思考验证码产品的发展方向。
导读:12306验证码,长时间高居反人类产品排行榜第一名(据某网站调查),普通人一次通过率仅8%,人也识别不清的图片就能成功阻挡自动机了吗?谷歌街景验证码完全取自自然环境确保图片的不重复不被爆破,但是面对黑产的巨额利润,又能坚持多久?本文由安全平台部的shisi撰写,试图通过模仿黑产的破解手法去重新思考验证码产品的发展方向。 验证码,人类与机器不平等的对抗 在AI的新时代背景下,破解一款验证码的成本正变的越来越低。 很多时候,看似复杂的谷歌街景、12306验证码、让人望而却步的百万图库,实际并不复杂:
前言 文字识别是计算机视觉研究领域的分支之一,归属于模式识别和人工智能,是计算机科学的重要组成部分 本文将以上图为主要线索,简要阐述在文字识别领域中的各个组成部分。 一 ,文字识别简介 计算机文字识别,俗称光学字符识别,英文全称是Optical Character Recognition(简称OCR),它是利用光学技术和计算机技术把印在或写在纸上的文字读取出来,并转换成一种计算机能够接受、人又可以理解的格式。OCR技术是实现文字高速录入的一项关键技术。 在OCR技术中,印刷体文字识别是开展最早,技术
hi,大家好~我是shadow,一枚设计师/全栈工程师/算法研究员,目前主要研究方向是人工智能写作和人工智能设计,当然偶尔也会跨界到人工智能艺术及其他各种AI产品。
之前有个爬虫需求,但每次请求都需要进行验证码识别,故需要ocr识别,推荐一个Python免费的验证码识别-ddddocr(谐音带带弟弟OCR)
对于web应用程序来讲,处于安全性考虑,在登录的时候,都会设置验证码,验证码的类型种类繁多,有图片中辨别数字字母的,有点击图片中指定的文字的,也有算术计算结果的,再复杂一点就是滑动验证的。诸如此类的验证码,对我们的系统增加了安全性的保障,但是对于我们测试人员来讲,在自动化测试的过程中,无疑是一个棘手的问题。 1、web自动化验证码解决方案 一般在我们测试过程中,登录遇到上述的验证码的时候,有以下种解决方案: 第一种、让开发去掉验证码 第二种、设置一个万能的验证码 第三种、通过cookie绕过登录 第四种、自动识别技术识别验证码 2、自动识别技术识别验证码 前三种解决方案,想必大家都比较了解,本文重点阐述第四种解决方案,也就是验证码的自动识别,关于验证码识别这一块,可以通过两个方案来解决, 第一种是:OCR自动识别技术, 第二种是:通过第三方打码平台的接口来识别。 OCR识别技术 OCR中文名称光学识别, tesseract是一个有名的开源OCR识别框架,它与Leptonica图片处理库结合,可以读取各种格式的图像并将它们转化成超过60种语言的文本,可以不断训练自己的识别库,使图像转换文本的能力不断增强。如果团队深度需要,还可以以它为模板,开发出符合自身需求的OCR引擎。那么接下来给大家介绍一下如何使用tessract来识别我们的验证码。 关于OCR自动识别这一块,需要大家安装Tesseract,并配置好环境,步骤如下 1)、安装tesseract 适用于Tesseract 3.05-02和Tesseract 4.00-beta的 Windows安装程序下载地址:github.com/UB-Mannheim… 2)、加入培训数据 tesseract 默认只能识别英文,如果您想要识别其他语言,则需要下载相应的培训数据 下载地址:github.com/tesseract-o… 下图为中文数据包 我们只做中文,暂时下载一个中文的文字训练数据就可以 ,然后将.traineddata文件复制到安装之后的’tessdata’目录中。C:\OCR\Tesseract-OCR\tessdata 3)、配置环境变量 要从任何位置访问tesseract-OCR,您可能必须将tesseract-OCR二进制文件所在的目录添加到Path变量中C:\OCR\Tesseract-OCR。 安装后tesseract之后 ,并不能直接在python中使用,我们要想在python中使用,需要安装pytesseract模块我们可以通过 pip 安装 pip install pytesseract python中识别验证码图片内容 安装好后。找一张验证码图片,如下图(命名为test.jpg),放在当前python文件同级目录下面, 使用 PIL中的Image中的open方法打开验证码图片,调用pytesseract.image_to_string方法,可以识别图片中的文字,并且转换成字符串,如下面代码所示。 import pytesseract from PIL import Image pic = Image.open(‘test.jpg’) pic 为打开的图片,lang指定识别转换的语言库 text = pytesseract.image_to_string(pic,lang=‘chi_sim’) print(text) 通过上述方法能识别简单的验证码,但是存在一定的问题,识别的精度不高,对于一些复杂一点,有干扰线的验证码无法正确识别出结果。 接下来给大家介绍一下第二种识别的方案,第三方的打码平台识别 打码平台识别验证码 第三方的打码平台相对于OCR来讲,优势在于识别的精准度高,网络上的第三方打码平台很多,百度随便一搜就有几十个,这个给大家列举几个,如下所示: 网络上的第三方打码平台众多,这里小编选择超级鹰这个第三方的平台来给大家做演示。 首先登录我们需要注册登录超级鹰这个网站 www.chaojiying.com,进入之后我们找到python对应的开发文档并下载, 下载开发文档 下载之后解压缩,得到如下文件 第三方打码平台的接口分析 我们打开chaojiying.py这个文件后,会发现这个文件中给出了的接口非常简单,如下所示 首先第一步创建一个用户对象:三个参数(账号,密码,软件ID),账号密码就是该网站的账号密码,那么软件ID呢?软件ID我们可以在用户中心找到软件ID,然后进去点击生成一个软件ID(如下图), 第二行代码就是打开一个要识别的验证码图片,并读取内容, 第三行,调用PostPic方法识别验证码,两个参数(验证码图片内容,验证码类型),关于验证码类型,请参考该网站的价格体系(如下图),根据验证码类型选择对应的数值传入。 结果提取: PostPi
scrapy_selenium是一个结合了scrapy和selenium的库,可以让我们使用selenium的webdriver来控制浏览器进行动态网页的爬取。但是在使用scrapy_selenium的过程中,我们可能会遇到一些问题,比如如何设置代理、如何处理反爬、如何优化性能等。本文将介绍一些scrapy_selenium的常见问题和解决方案,希望对你有所帮助。
OCR(Optical Character Recognition,光学字符识别)是指使用扫描仪或数码相机对文本资料进行扫描成图像文件,然后对图像文件进行分析处理,自动识别获取文字信息及版面信息的软件。一般情况下,对于字符型验证码的识别流程如下:主要过程可以分解为五个步骤:图片清理,字符切分,字符识别,恢复版面、后处理文字几个步骤。通过本章节学习联系搭建OCR环境,使用Tesseract平台对验证码进行识别。
dddocr是一个基于深度学习的OCR(Optical Character Recognition,光学字符识别)库,用于识别图片中的文字。它可以识别各种类型的文字,包括印刷体、手写体、表格、条形码等。dddocr库使用了深度卷积神经网络(CNN)和循环神经网络(RNN)等先进的模型,具有较高的准确性和稳定性。
领取专属 10元无门槛券
手把手带您无忧上云