本文主要介绍一下numpy中的几个常用函数,包括hstack()、vstack()、stack()、concatenate()。
numpy.concatenate((a1,a2,…), axis=0)函数,能够一次完成多个数组的拼接。其中a1,a2,…是数组类型的参数示例:
axis=0,拼接方向为横轴,需要纵轴结构相同,拼接方向可以理解为拼接完成后数量发生变化的方向。
在训练神经网络的时候,经常需要对原始图像做各种各样的增强来增加数据量,最常见的也就是旋转和翻转操作了,实现这两种操作也多种多样,本博客就是来探究不同操作带来的结果
Python 是一种通用且功能强大的编程语言,广泛用于科学计算、数据分析和机器学习。使Python对这些领域如此有用的关键库之一是NumPy。NumPy提供了强大的工具来处理数组,这对于许多科学计算任务至关重要。在本文中,我们将探讨如何使用 Python 连接两个二维 NumPy 数组。
numpy.concatenate((a1, a2, ...), axis=0, out=None)
在 numpy 中合并数组比较常用的方法有 concatenate、vstack 和 hstack。在介绍这三个方法之前,首先创建几个不同维度的数组:
在实践过程中,会经常遇到数组拼接的问题,基于numpy库concatenate是一个非常好用的数组操作函数。
Numpy中提供了concatenate,append, stack类(包括hsatck、vstack、dstack、row_stack、column_stack),r_和c_等类和函数用于数组拼接的操作。
axis=0表示垂直方向叠加,axis=1表示水平方向叠加,axis=None表示一维数组叠加。
在python中,用于数组拼接的主要来自numpy包,当然pandas包也可以完成。
在做图像和nlp数组数据处理的时候,经常要实现两个数组堆叠或者连接的功能,这经常用numpy库的一些函数实现,常用于堆叠数组的numy函数如下:
视频资料:https://tv.sohu.com/v/dXMvMzM1OTQyMDI2LzExMzQxMDY1MS5zaHRtbA==.html 视频的内容介绍:一张照片,横着切成若干条,并且没有打乱,随后隔条分成了两份,然后把这两份各自拼接在一起,出现了跟两张原图一模一样的图片,将两张图竖着切成若干条,并且没有打乱,随后隔条分成了四份,出现了四张跟原图一模一样的图片(等比例缩小)
我有朋友问我,他准备买车,预算20-25万,他在考虑几个车,说现在很难做出决定,让我帮他参谋参谋,该买哪个?
思路:首先将数组转成列表,然后利用列表的拼接函数append()、extend()等进行拼接处理,最后将列表转成数组。
该方法只适用于简单的一维数组拼接,由于转换过程很耗时间,对于大量数据的拼接一般不建议使用。
处理单一任务是强化学习的基础,它的目标是在不确定的环境中采取最佳行动,产生相对于任务的最大长期回报。但是在多代理强化学习中,因为存在多个代理,所以代理之间的关系可以是合作的,也可以是对抗,或者两者的混合。多代理的强化学习引入了更多的复杂性,每个代理的状态不仅包括对自身的观察,还包括对其他代理位置及其活动的观察。
某一天写代码的时候突然遇到一个场景,需要批量对标注信息box进行操作(box包括[x1,y1,x2,y2])。
雷达图也被称为网络图,蜘蛛图,星图,蜘蛛网图,是一个不规则的多边形。雷达图可以形象地展示相同事物的多维指标,应用场景非常多。
np.append() np.concatenate() np.stack() np.hstack() np.vstack() np.dstack() 其中最泛用的是第一个和第二个。第一个可读性好,比较灵活,但是占内存大。第二个则没有内存占用大的问题。
在评估模型时,虽然准确性是训练阶段模型评估和应用模型调整的重要指标,但它并不是模型评估的最佳指标,我们可以使用几个评估指标来评估我们的模型。
来源:DeepHub IMBA本文约2700字,建议阅读5分钟在本文中,我将讨论和解释其中的一些方法,并给出使用 Python 代码的示例。 在评估模型时,虽然准确性是训练阶段模型评估和应用模型调整的重要指标,但它并不是模型评估的最佳指标,我们可以使用几个评估指标来评估我们的模型。 因为我们用于构建大多数模型的数据是不平衡的,并且在对数据进行训练时模型可能会过拟合。在本文中,我将讨论和解释其中的一些方法,并给出使用 Python 代码的示例。 混淆矩阵 对于分类模型使用混淆矩阵是一个非常好的方法来评估
1.水平组合:np.hstack(arr1,arr2) 或 concatenate(arr1,arr2,axis=1) 2.垂直组合:np.vstack(arr1,arr2) 或 concatenate(arr1,arr2,axis=0) 3.深度组合:np.dstack(arr1,arr2) 4.列组合:np.column_stack(arr1,arr2) 5.行组合:np.row_stack(arr1,arr2)
我们在以前的文章中已经介绍了如何安装python及其python的一些特性,现在将介绍数据分析过程中经常用到的Numpy库。
本文实例为大家分享了python实现图像拼接的具体代码,供大家参考,具体内容如下 一、效果 二、代码 1、单张图片拼接 # 图片拼接 from PIL import Image # pil paste
import numpy as np import matplotlib.pyplot as plt #标签 labels = np.array(['3℃','5℃','6℃','3℃','1℃','3℃','3℃','2℃']) #数据个数 dataLenth = 8 #数据 data = np.array([3,5,6,3,1,3,3,2]) angles = np.linspace(0, 2*np.pi, dataLenth, endpoint=False) data = np.concatenate((data, [data[0]])) angles = np.concatenate((angles, [angles[0]])) fig = plt.figure() ax = fig.add_subplot(111, polar=True) ax.plot(angles, data, 'ro-', linewidth=2) ax.set_thetagrids(angles * 180/np.pi, labels, fontproperties="SimHei") ax.set_title("温度变化雷达图", va='bottom', fontproperties="SimHei") ax.grid(True) plt.show()
np.arange([start,] stop[, step,], dtype=None) : 略(前面某篇介绍过)
NumPy 数组迭代是访问和处理数组元素的重要方法。它允许您逐个或成组地遍历数组元素。
一些最有趣的数据研究来自于不同的数据源的组合。这些操作可能涉及,从两个不同数据集的非常简单的连接,到更复杂的数据库风格的连接和合并,来正确处理数据集之间的任何重叠。Series和DataFrame是考虑到这类的操作而构建的,而 Pandas 包含的函数和方法使得这种数据整理变得快速而直接。
Python 中的数据操作几乎与 NumPy 数组操作同义:即使是像 Pandas 这样的新工具也是围绕 NumPy 数组构建的。本节将介绍几个示例,使用 NumPy 数组操作来访问数据和子数组,以及拆分,重塑和连接数组。
import numpy as np import pandas as pd from pandas import Series,DataFrame Concatenate 矩阵:Concatenate Series和DataFrame:concat # 创建矩阵 arr1 = np.arange(9).reshape(3,3) arr1 array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) # 创建矩阵 arr2 = np.arange(9).r
首先我们获取了一个LPG气瓶图像,该图像取自在传送带上运行的仓库。我们的目标是找出LPG气瓶的批号,以便更新已检测的LPG气瓶数量。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sinat_35512245/article/details/78502782
前人栽树,后人乘凉,学习还是要多交流,学习别人的学习经验,这样可以少走弯路,别人推荐的一套“机器学习”相关学习资料,先理解的算法,然后编程实现,对理解“机器学习”算法原理十分有帮助。
本节主要介绍numpy中在数组上的一些常规操作,在数组级别上包括数组迭代,数组拼接、数组分割,在元素级别包括元素迭代、元素增加、元素删除等。 本节的内容比较重要,同时也比较基础,是养成良好的编程习惯的重要的一个环节,因为每一个方法都可以通过最笨拙的索引方法去实现,但是这对于代码的可读性和程序的运行速度都是有影响的。
每个特征的标准化:(原数据 - 特征平均值) / 标准差。 得到的就是特征平均值为0,标准差为1
历时两个月,Shopee比赛终于落下帷幕,我们队伍ID为Team Name,队员为“兰恒强”,在Private leadboard取得44名成绩,排名top2%,非常感谢队友小白Lan和zhengheng的强力付出与贡献,另外我们也很感谢那些分享了他们的想法和知识的参赛选手,特别是@chirs 和@ragnar。
三次的深度学习基本涵盖了神经网络的基础内容 蛇咬着自己的尾巴,结束也是开始,后续继续深入
前言 前面我们学习了numpy库的简单应用,今天来学习下比较重要的如何处理数组。 处理数组形状 下面可将多维数组转换成一维数组时的情形。 利用以下函数处理数组的形状: 拆解:ravel()函数可将多维数组变成一维数组。 拉直(Flatten):flatten()函数与ravel()相同,但是,flatten()返回的是真实的数组,需要分配新的内存空间;而ravel()函数返回的只是数组的视图。 用元组指定数组形状:除reshape()函数外,还可以用元组来定义数组的形状。 转置:在线性代数中,矩阵的转置操作
这两行代码导入了 numpy 和 pandas 库。numpy 是 Python 中用于科学计算的基础库,提供了大量的数学函数工具,特别是对于数组的操作。pandas 是基于 numpy 构建的一个提供高性能、易用数据结构和数据分析工具的库。在本段代码中,numpy 用于生成随机数数组和执行数组操作,pandas 用于创建和操作 DataFrame。
本文的案例讲解的是机器学习中一个重要问题:回归问题,它预测的是一个连续值而不是离散的标签。
半监督学习(Semi-Supervised Learning)是一类机器学习方法,通过结合少量有标签数据和大量无标签数据来进行学习。相比于纯监督学习,半监督学习在标签数据稀缺的情况下能更有效地利用无标签数据,提高模型的泛化能力和预测准确性。本文将深入探讨半监督学习的基本原理、核心算法及其在实际中的应用,并提供代码示例以帮助读者更好地理解和掌握这一技术。
本文由腾讯云+社区自动同步,原文地址 https://stackoverflow.club/article/acgan_reading_understanding/
0 回顾 昨天推送了逻辑回归的基本原理:从逻辑回归的目标任务,到二分类模型的构建,再到如何用梯度下降求出二分类模型的权重参数。今天,我们将对这个算法兑现为代码,包括用于模拟数据集的生成,到模型的创建,权重参数的求解。这个过程是动手实践写代码的过程,这很有趣! 1 生成模拟的数据集 为了编写代码模拟二分类任务,我们的第一步工作是先生成用于测试的数据集,当然这一步也可以从网上找相关二分类任务的实际数据集。 首先看下生成的用于模拟的数据集长得样子,它有两个特征w1,w2组成,共有200个样本点,现在的任务是要
参考链接: Python中NumPy的基本切片Slicing和高级索引Indexing
使用LSTM模型预测多特征变量的时间序列,能够帮助我们在各种实际应用中进行更准确的预测。这些应用包括金融市场预测、气象预报、能源消耗预测等。
np.ones((3,5),dtype=float) #创建3*5的二维全为1的数组
领取专属 10元无门槛券
手把手带您无忧上云