MySQL是目前互联网公司使用最广的数据库,InnoDB是MySQL使用最广的存储引擎,MyISAM和InnoDB的五项最佳实践,和大家聊聊,尽量多讲“为什么”。
InnoDB,5项最佳实践,知其所以然?
对这个问题有兴趣是源于一次开发中遇到要统计人数的需求。类似于“得到”专栏的订阅数。
前几天在网上看了一个帖子,描述的现象是在MySQL中,对in,or,union all的性能的比对,看完之后,我就产生了疑问。 文章的大意是说,使用in,or的查询效率较低,大概查询需要花费11秒,而使用了union all的方式之后,性能提高到了0.02秒。 如果单纯说是MySQL半连接的优化器性能问题,我信,但是看了文中提供的SQL语句,我感觉至少从我使用MySQL 5.7的感觉来看,这个差别会很小,或者说没有差别。 当然有这个想法,自己也得论证不是。我就尝试了两次,文中说数据量
在上一次学习mysql索引和explain后,又观看了一些大佬的视频,补充之前一些遗忘的内容和可能有误的知识点
尽管学校多年的信息化应用积累了大量的数据,但信息孤岛的壁垒一直没有打破,对这些数据无法进一步的挖掘、分析、加工、整理,不能给学校教育、教学、研发、总务等各方面管理决策提供科学、有效的数据支撑。目前的公司现状:
ES 生产集群的部署架构是什么?每个索引的数据量大概有多少?每个索引大概有多少个分片?
第一篇,说说MySQL两个最常用的存储引擎,MyISAM和InnoDB。照自己的理解,把一些知识点总结出来,不只说知识点,多讲“为什么”。 一、关于count(*) 知识点:MyISAM会直接存储总行数,InnoDB则不会,需要按行扫描。
MySQL是一个非常主流的小型关系型数据库管理系统,除了系统自带的命令行管理工具之外,还有许多其他的图形化管理工具。本系列的上一篇中已经说过了安装步骤,本篇就挑比较常用并且好用的几款图形化软件说说,供大家参考。
《大数据量下,58同城mysql实践》 WOT(World Of Tech)2015,互联网运维与开发者大会将在北京举行,会上58同城将分享《大数据量下,58同城mysql实战》的主题,干货分享抢先看
上篇文章说了当数据量大,并且访问量大的时候,可以把业务和DB分开放在不同的服务器,这时候会出现session问题,可以通过负载均衡器来解决session问题,保证同一个会话每次都发在同一个服务器上,也可以通过单独的服务保存sesion。
缘起:有个朋友问我分区表在58的应用,我回答不出来,在我印象中,百度、58都没有听说有分区表相关的应用,业内进行一些技术交流的时候也更多的是自己分库分表,而不是使用分区表。于是去网上查了一下,并询问了58到家的DBA专家,将自己收到的信息沉淀下来,share给大伙。
本文以视频+文字放送,为你带来腾讯云企业级MySQL-列压缩特性 【需求背景】 当前MySQL有针对行格式级别以及数据库页面级别的压缩,这两种压缩方式在处理一个表,同时有大字段和其它很多小字段,并且针对小字段的读写访问频繁,对大字段的访问不频繁的场景中,它的读写访问都会压缩和解压数据,这造成许多不必要的计算资源浪费。 腾讯云企业级MySQL(CDB)运用列压缩功能来压缩访问不频繁的大字段,同时能够减少整行字段的存储空间,进而提高整体读写访问的效率。 例如一张员工表,前面三个字段分别表示员工 id、年龄以及
当MySQL单表的数据量过大时,数据库的访问速度会下降,“数据量大”问题的常见解决方案是“水平切分”。
系统从圣诞节那天晚上开始,每天晚上固定十点多到十一点多这个时段,大概瘫痪1h左右,过这时段系统自动恢复。系统瘫痪时的现象就是,网页和App都打不开,请求超时。系统架构:
卡思数据是国内领先的视频全网数据开放平台,依托领先的数据挖掘与分析能力,为视频内容创作者在节目创作和用户运营方面提供数据支持,为广告主的广告投放提供数据参考和效果监测,为内容投资提供全面客观的价值评估。
无论什么类型的数据库,数据量大了就需要分页,数据量大了,就要考虑分页的效率等。效率在此不做分析。
零氪科技作为全球领先的人工智能与医疗大数据平台,拥有国内最大规模、体量的医疗大数据资源库和最具优势的技术支撑服务体系。多年来,零氪科技凭借在医疗大数据整合、处理和分析上的核心技术优势,依托先进的人工智能技术,致力于为社会及行业、政府部门、各级医疗机构、国内外医疗器械厂商、药企等提供高质量医疗大数据整体解决方案,以及人工智能辅助决策系统(辅助管理决策、助力临床科研、AI 智能诊疗)、患者全流程管理、医院舆情监控及品牌建设、药械研发、保险控费等一体化服务。
昨天遇到一个问题, 200万的表里查询9万条数据, 耗时达63秒. 200万数据不算多, 查询9万也还好. 怎么用了这么长的时间呢? 问题是一句非常简单的sql. select * from tk_t
应用程序都离不开数据库,那不同的数据结构,就会存放在不同的数据数据库中,所以数据库按数据结构分为关系型数据库和非关系型数据库。接下来就总结一下这两者的区别吧。
WOT(World Of Tech)2015,互联网运维与开发者大会将在北京举行,会上58同城将分享《大数据量下,58同城mysql实战》的主题,干货分享抢先看。 1)基本概念 2)常见问题及
中间件分表是不是一个好的主意?通过中间件来对MYSQL的数据进行分表是一个常见的对于大数量的解决的方案,通过中间件将应用的数据在中间层进行路由,通过路由将一张表的数据,映射到不同物理数据库上的表,通过应用设计的分片键将数据根据规则存储在不同的物理服务器上。实际上分布式数据库的基本原理也是这样。
缘起:有个朋友问我分区表在58的应用,我回答不出来,在我印象中,百度、58都没有听说有分区表相关的应用,业内进行一些技术交流的时候也更多的是自己分库分表,而不是使用分区表。于是去网上查了一下,并询问了58到家的DBA专家,将自己收到的信息沉淀下来,share给大伙。 解决什么问题? 回答:当mysql单表的数据库过大时,数据库的访问速度会下降,“数据量大”问题的常见解决方案是“水平切分”。 mysql常见的水平切分方式有哪些? 回答:分库分表,分区表 什么是mysql的分库分表? 回答:把一个很大的库(表)
这是一个线上问题,从日志平台查询到的 SQL 执行情况,该 SQL 执行的时间为 11.146s,可以认定为是一个慢查询,美化后的 SQL 如下:
根据上图可以看到QPS:10.73k,实际上真实的并发大量数据到达的时候,我这里最高的QPS是将近15k.而目前单个数据库分片(实例)4CPU8G内存的配置下,最高的性能是7k的QPS。
就是把一张表的数据分成N个区块,在逻辑上看最终只是一张表,但底层是由N个物理区块组成的
就是最近,似乎想明白了有些people的心里世界是多么的有interesting, 平日里那种我过得好不好,与我无关,而与别人过得没我好有关,别人过得不好,显得我过得没有那么糟糕的心里,最终决定自己感
vivo 是一家全球性的移动互联网智能终端公司,品牌产品包括智能手机、平板电脑、智能手表等 ,截至 2022 年 8 月,已进驻 60 多个国家和地区,全球用户覆盖 4 亿多人。
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
其中adr和am表的记录数大概都是400到500万,而ad表的数据量大概只有三四千。
其实是写错了,应该是混沌理论,不过大清早6:00在发这篇的时候,的确是饿了,见谅。
最近成功中标一个国内重大酒业集团的公有云项目,因客户自身的IT人员紧张,客户提出要求将应用、数据库的迁移上云作为中标方的服务内容之一。以前,经常接触的政企云项目,一般由服务商配合客户完成迁移方案的拟定,服务商将云资源分配好,由客户自身的厂商完成应用、数据库的迁移。厂商一般进行应用、数据库的重新部署,虽然这种方法较繁杂,但也是最稳妥的一种迁移方式。
这类似于一张日志表,因此数据量很大,想要统计用户积分做排行榜时,表数据可能如下:
作为一个正规微信群的群员,有时候难免会被问到一些非常正规的PHP问题。比如前几天,有个小老哥就问了一个非常常见的问题:
1、最早的数据分析可能就报表 目前很多数据分析后的结果,展示的形式很多,有各种图形以及报表,最早的应该是简单的几条数据,然后搞个web页面,展示一下数据。早期可能数据量也不大,随便搞个数据库,然后SQ
一、缘起 mysql主从复制,读写分离是互联网用的非常多的mysql架构,主从复制最令人诟病的地方就是,在数据量较大并发量较大的场景下,主从延时会比较严重。 为什么mysql主从延时这么大? 回答:
MYSQL中索引是经常用来对数据库查询性能优化的方式,再MySQL中采用了B+树作为索引结构来减少磁盘IO次数去提高数据的检索性能。但是在某些场景下,由于查询语句设计不合理,或者对MySQL的理解不够深入。索引有可能会失效,变为全表扫描,这对于大数据量的查询是非常低效的。今天我们就来聊聊这些常见的失效场景。
mysql数据库一主多从的架构,主写从读进行读写分离,专用从库做数据备份,每天0点全备一次,12点增量备份一次,初始阶段数据量很小的情况按此方案,后续数据量大,读写频繁时,再进行相关调整,增加增量备份频次
#基于PhalApi的DB集群拓展 V0.1bate ##前言## 先在这里感谢phalapi框架创始人@dogstar,为我们提供了这样一个优秀的开源框架. 编写本次拓展出于的目的是解决大量数据写入
最近迁移一个数据库,500多张表大概600多万条数据,通过navicat导出的数据,再通过source命令导入到mysql8.0
小史是一个应届生,虽然学的是电子专业,但是自己业余时间看了很多互联网与编程方面的书,一心想进BAT互联网公司。
数据库优化有很多可以讲,按照支撑的数据量来分可以分为两个阶段:单机数据库和分库分表,前者一般可以支撑500W或者10G以内的数据,超过这个值则需要考虑分库分表。另外,一般大企业面试往往会从单机数据库问起,一步一步问到分库分表,中间会穿插很多数据库优化的问题。本文试图描述单机数据库优化的一些实践,数据库基于mysql,如有不合理的地方,欢迎指正。
随着大数据的爆红,数据分析师这个职位也得到了越来越多的关注,千千万万懂些大数据技术的少年们都渴望成为高大上的“大数据科学家”,可是,你们真的准备好了吗? 1、最早的数据分析可能就报表
今天在处理一个业务的时候,谈及利用infobright作为存储引擎,来支持业务对大量数据的查询操作,就特意看了一下这个infobright的特点,这里对它进行一个总结。
大数据的采集是指利用多个数据库来接收发自客户端(Web、App或者传感器形式等)的 数据,并且用户可以通过这些数据库来进行简单的查询和处理工作。比如,电商会使用传统的关系型数据库MySQL和Oracle等来存储每一笔事务数据,除 此之外,Redis和MongoDB这样的NoSQL数据库也常用于数据的采集。
我们在开发的过程中使用分页是不可避免的,通常情况下我们的做法是使用limit加偏移量:select * from table where column=xxx order by xxx limit 1,20。当数据量比较小时(100万以内),无论你翻到哪一页,性能都是很快的。如果查询慢,只要在where条件和order by 的列上加上索引就可以解决。但是,当数据量大的时候(小编遇到的情况是500万数据),如果翻到最后几页,即使加了索引,查询也是非常慢的,这是什么原因导致的呢?我们该如何解决呢?
一、背景 我们在开发的过程中使用分页是不可避免的,通常情况下我们的做法是使用limit加偏移量:select * from table where column=xxx order by xxx limit 1,20。当数据量比较小时(100万以内),无论你翻到哪一页,性能都是很快的。如果查询慢,只要在where条件和order by 的列上加上索引就可以解决。但是,当数据量大的时候(小编遇到的情况是500万数据),如果翻到最后几页,即使加了索引,查询也是非常慢的,这是什么原因导致的呢?我们该如何解决呢?
很多开发者可能都没有接触过 MySQL 的架构部署,但是大多数应该都听过集群架构吧。其实 MySQL 集群架构,总结来说一共有好多种,今天我主要总结一下其中常用的 8 种集群架构。
领取专属 10元无门槛券
手把手带您无忧上云