上周新系统改版上线,上线第二天就出现了较多的线上慢sql查询,紧接着dba 给出了定位及解决方案,这里较多的是使用延迟关联去优化。 而我对于这个延迟关联也是第一次听说(o(╥﹏╥)o),所以今天一定要学习并产出一篇学习笔记。(^▽^)
我试图在MariaDB(MySQL)上运行一个简单的连接查询,但性能简直糟糕透了。下面将介绍我是如何通过两个简单的Unix命令,将查询时间从380小时降到12小时以下的。
每个女孩都是天使,每个女孩都美丽芬芳。在这个特别的日子里,温馨的女人节骄傲的向我们走来,祝女神节日快乐!
自 MySQL5.1.6起,增加了一个非常有特色的功能–事件调度器(Event Scheduler),可以用做定时执行某些特定任务(例如:删除记录、对数据进行汇总等等),来取代原先只能由操作系统的计划任务来执行的工作。更值得一提的是MySQL的事件调度器可以精确到每秒钟执行一个任务,而操作系统的计划任务(如:Linux下的CRON或Windows下的任务计划)只能精确到每分钟执行一次。对于一些对数据实时性要求比较高的应用(例如:股票、赔率、比分等)就非常适合。
在需要输出网站用户注册数或者插入数据之前判断是否有重复记录时,就需要获取满足条件的MySQL查询的记录数目,接下来介绍两种查询统计方法,感兴趣的朋友可以了解下啊,或许对你有所帮助
MySQL不仅是一个强大的关系数据库管理系统,而且提供了一系列工具和接口,使开发人员能够轻松地在各种应用程序中使用MySQL。
请写SQL查询出截至 2019-07-27(包含2019-07-27), 近 30天的每日活跃用户数(当天只要有一条活动记录,即为活跃用户)。
慢日志查询的主要功能就是,记录sql语句中超过设定的时间阈值的查询语句。例如,一条查询sql语句,我们设置的阈值为1s,当这条查询语句的执行时间超过了1s,则将被写入到慢查询配置的日志中. 慢查询主要是为了我们做sql语句的优化功能.
慢日志查询的主要功能就是,记录sql语句中超过设定的时间阈值的查询语句。例如,一条查询sql语句,我们设置的阈值为1s,当这条查询语句的执行时间超过了1s,则将被写入到慢查询配置的日志中.
MongoDB数据库默认的管理工具是(CLI)Shell命令行,对于专业的DBA来说比较容易上手,但是对于普通人员GUI可视化工具更方便使用。我们就来介绍13个好用的MongoDB可视化工具。MongoDB官方提供了社区版的Compass,可以独立安装使用,也提供了云服务器版本MongoDB Atlas。商业版本的MongoDB必须购买其订阅。MongoDB Atlas旨在在AWS,Azure和Google Cloud等云平台上运行。阿里云MongoDB数据库也提供了基于Web的管理工具。免费使用。MongoDB自带的Shell命令行工具,大家应该很熟悉了。
关注公众号:程序员白楠楠,领取2020最新Java面试题手册(200多页PDF文档)。
以上案例用到的处理器有“QueryDatabaseTable”、“ConvertAvroToJSON”、“SplitJson”、“PutHDFS”四个处理器。
alter table gametop800 add primary key(id);
在MySQL中,执行计划是优化器根据查询语句生成的一种重要的数据结构,它描述了如何通过组合底层操作实现查询的逻辑。当我们编写一条SQL语句时,MySQL会自动对其进行优化,并生成最优的执行计划以实现更快的查询速度。
对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
关于 MySQL 相关的文章和教程发布了很多,关注微信公众号 Java后端,回复 666 下载就行了。
1、对查询进行优化,应尽量避免全表扫描,首先应考虑在where及order by涉及的列上建立索引。
1, 对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
线上有个定时任务,这个任务需要查询一个表几天范围内的一些数据做一些处理,每隔十分钟执行一次,直至成功。
关于In与Exists的比较,先说结论,归纳出IN 和Exists的适用场景: 1)IN查询在内部表和外部表上都可以使用到索引。 2)Exists查询仅在内部表上可以使用到索引。 3)当子查询结果集很大,而外部表较小的时候,Exists的Block Nested Loop(Block 嵌套循环)的作用开始显现,并弥补外部表无法用到索引的缺陷,查询效率会优于IN。 4)当子查询结果集较小,而外部表很大的时候,Exists的Block嵌套循环优化效果不明显,IN 的外表索引优势占主要作用,此时IN的查询
1、查询日志记录了所有对 MySQL 数据库请求的信息,不论这些请求是否得到了正确的执行。
在Oracle中,如果要进行日期间的查询需要用到Oracle的内置函数to_date()。
mysql缓存机制就是缓存sql 文本及缓存结果,用KV形式保存再服务器内存中,如果运行相同的sql,服务器直接从缓存中去获取结果,不需要在再去解析、优化、执行sql。如果这个表修改了,那么使用这个表中的所有缓存将不再有效,查询缓存值得相关条目将被清空。表中得任何改变是值表中任何数据或者是结构的改变,包括insert,update,delete,truncate,alter table,drop table或者是drop database 包括那些映射到改变了的表的使用merge表的查询,显然,者对于频繁更新的表,查询缓存不合适,对于一些不变的数据且有大量相同sql查询的表,查询缓存会节省很大的性能。
昨天遇到一个问题, 200万的表里查询9万条数据, 耗时达63秒. 200万数据不算多, 查询9万也还好. 怎么用了这么长的时间呢? 问题是一句非常简单的sql. select * from tk_t
最近多次看到用SQL查询连续打卡信息问题,自己也实践一波。抛开问题本身,也是对MySQL窗口函数和自定义变量用法的一种练习。
先来说说幻读的概念吧,在MySQL中,如果一个事务A根据某种特定条件的SQL查询出来一些记录record_a,此时另外一个事务插入了一些符合这种特定条件的记录record_b,原先的事务再次根据同样的SQL,查询到了record_a和record_b,这种现象就称之为幻读。
select查询优化一直是日常开发和数据库运维绕不开的一道坎,SQL的查询速度决定了页面的加载速度,进一步决定了客户浏览体验。
本篇Blog在总体层面介绍了SQL查询引擎Rider的功能及设计,其细节部分将会在后面的篇章中一一道来。
假设你在阅读一本包含数万页的巨幅小说,这就像数据库中的大型结果集。显然,你不可能立刻记住这本书的所有内容。这就像你的程序不可能一次性把大型结果集加载到内存中。那么,你怎么做呢?你可能会使用一个书签(游标)来追踪你当前阅读到了哪一页。
PyMySQL是一个Python语言下的MySQL数据库驱动程序,为Python提供了一个简单易用的接口来操作MySQL数据库。本文将介绍如何入门使用PyMySQL。
在公司实习的时候,导师分配了SQL慢查询优化的任务,任务是这样的:每周从平台中导出生产数据库的慢查询文件进行分析。进行SQL优化的手段也主要是修改SQL写法,或者新增索引。
假设您有一个user_login表,包含user_id(用户ID)和log_date(用户每次登录的时间戳)字段,我们想要找出连续10天登录过的用户。下面是一个更简洁易懂的解释以及对应的SQL查询模板:
随着互联网的迅猛发展,数据库作为存储、检索和管理数据的关键组件,在Web应用中扮演着举足轻重的角色。MySQL,作为一种流行的开源关系型数据库管理系统,因其高效、稳定和易用性而广受开发者青睐。而PHP,作为一种广泛应用于Web开发的服务器端脚本语言,与MySQL的结合使用,可以轻松实现动态网站的数据交互功能。本文将从基础到进阶,详细讲解如何使用PHP连接MySQL,并通过案例说明,帮助读者更好地理解和应用这一技术。
https://www.cnblogs.com/sevck/p/6733702.html
1、查询选项,用来对查询结果进行简单的数据过滤,查询选项在select关键字之后有两个互斥。
在这篇文章中,我将介绍如何识别导致性能出现问题的查询,如何找出它们的问题所在,以及快速修复这些问题和其他加快查询速度的方法。 你一定知道,一个快速访问的网站能让用户喜欢,可以帮助网站从Google
前言 你一定知道,一个快速访问的网站能让用户喜欢,可以帮助网站从Google 上提高排名,可以帮助网站增加转化率。如果你看过网站性能优化方面的文章,例如设置服务器的最佳实现、到干掉慢速代码以及 使用CDN 加载图片,就认为你的 WordPress 网站已经足够快了。但是事实果真如此吗? 使用动态数据库驱动的网站,例如WordPress,你的网站可能依然有一个问题亟待解决:数据库查询拖慢了网站访问速度。 在这篇文章中主要介绍如何识别导致性能出现问题的查询,如何找出它们的问题所在,以及快速修复这些问题和其他加快
社区收藏业务是一个典型的读多写少的场景,社区各种核心Feeds流都需要依赖用户是否收藏的数据判断,早期缓存设计时由于流量不是很大,未体现出明显的问题,近期通过监控平台等相关手段发现了相关的一些问题,因此我们针对这些问题对缓存做了重构设计,以保障收藏业务的性能和稳定性。
隔离性是事务的基本特性之一,它可以防止数据库在并发处理时出现数据不一致的情况。最严格的情况下,我们可以采用串行化的方式来执行每一个事务,这就意味着事务之间是相互独立的,不存在并发的情况。然而在实际生产环境下,考虑到随着用户量的增多,会存在大规模并发访问的情况,这就要求数据库有更高的吞吐能力,这个时候串行化的方式就无法满足数据库高并发访问的需求,我们还需要降低数据库的隔离标准,来换取事务之间的并发能力。
最近艿艿和朋友正在肝一个 SpringBoot 2.4.2 的开源项目:https://github.com/YunaiV/ruoyi-vue-pro 记得 Star 关注下噢,胖友们的支持,真的很重要! 昨天 2020-01-31 完成任务:
最近刷完了LeetCode中的所有数据库题目,深深感到有些题目还是非常有深度和代表性的,而且比较贴合实际应用场景,特此发文以作分享。
当数据量比较大,若SQL语句写的不合适,会导致SQL的执行效率低,我们需要等待很长时间才能拿到结果
随着系统的数据量逐年增加,并发量也成倍增长,SQL性能越来越成为IT系统设计和开发时首要考虑的问题之一。SQL性能问题已经逐步发展成为数据库性能的首要问题,80%的数据库性能问题都是因SQL而导致。面对日益增多的SQL性能问题,如何下手以及如何提前审核已经成为越来越多的程序员必须要考虑的问题。
MyCli 是一个用Python编写的命令行工具,其主要调用prompt_toolkit库来构建交互式命令行应用程序。用于与各种数据库进行交互。它建立在Python的数据库API之上,并提供了许多方便的功能和快捷键,使数据库管理变得更加简单和高效。
在面对不够优化、或者性能极差的SQL语句时,我们通常的想法是将重构这个SQL语句,让其查询的结果集和原来保持一样,并且希望SQL性能得以提升。而在重构SQL时,一般都有一定方法技巧可供参考,本文将介绍如何通过这些技巧方法来重构SQL。
领取专属 10元无门槛券
手把手带您无忧上云