各位小伙伴好久不见,时光荏苒,不知不觉已经来到了寒风刺骨的冬天,今天出门差点把自己冻废在路上。在这寒冷的冬天,我带着我对程序探究的热情,来温暖这个寒冷的冬天。虽然好久不见,迫于生计,还是要一有时间就要总结的。
上一章节,我们使用 PreparedStatement 操作了 BLOB 字段,下面我们再来看看批量插入的操作。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?关注公种浩:程序员追风,回复012获取一套500多页PDF总结的MySQL学习笔记。
最近新的项目写了不少各种 insertBatch 的代码,一直有人说,批量插入比循环插入效率高很多,那本文就来实验一下,到底是不是真的?
在MySQL中设计表的时候,MySQL官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一,单机递增),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?
来源:blog.csdn.net/a18505947362/article/details/123667215 本文记录个人使用MySQL插入大数据总结较实用的方案,通过对常用插入大数据的4种方式进行测试,即for循环单条、拼接SQL、批量插入saveBatch()、循环 + 开启批处理模式,得出比较实用的方案心得。 一、前言 最近趁空闲之余,在对MySQL数据库进行插入数据测试,对于如何快速插入数据的操作无从下手,在仅1W数据量的情况下,竟花费接近47s,实在不忍直视!在不断摸索之后,整理出一些较实用的方
前言:在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇博客我们就来分析这个问题,探讨一下内部的原因。
mysql 的预编译功能,是为了那些频繁执行的语法不变的 sql 语句而准备的,每次 sql 语句执行都要经过数据库的编译,这个过程比较耗时,一条两条或十几条可能没什么感觉,如果是上千条效率会明显的有变化。mysql 提供的机制是可以让一个结构不变的 sql 语句预先在数据库中编译,我们只需要将可变的参数每次传递给它执行就可以了,这样就省去了编译的步骤,效率提高非常明显。下面就是预编译的一个小例子。
在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇文章我们就来分析这个问题,探讨一下内部的原因。
2.你可能会报这个错——Caused by: java.sql.SQLException: Data truncated for column ‘Color’ at row 1 ;
来源:cnblogs.com/wyq178/p/12548864.html 前言:在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究竟有什么坏处?本篇博客我们就来分析这个问题,探讨一下内部的原因。 一:mysql和程序实例 1.1:要说明这个问题,我们首先来建立三张表,分别是user_auto_key,user_uuid,user_ra
在服务端开发过程中,一般会使用MySQL等关系型数据库作为最终的存储引擎,Redis其实也可以作为一种键值对型的数据库,但在一些实际场景中,特别是关系型结构并不适合使用Redis直接作为数据库。这俩家伙简直可以用“男女搭配,干活不累”来形容,搭配起来使用才能事半功倍。本篇我们就这两者如何合理搭配以及他们之间数据如何进行同步展开。 一般地,Redis可以用来作为MySQL的缓存层。为什么MySQL最好有缓存层呢?想象一下这样的场景:在一个多人在线的游戏里,排行榜、好友关系、队列等直接关系数据的情景下,如果直接
今天遇到了一个批量插入大量数据任务,然后出于小白本能,直接for-each循环插入不就好了,于是手上开始噼里啪啦一顿操作,写好了从读取excel到插入数据库的工作,于是就美滋滋的开始了自己的测试,试了一把,一次通过perfect,然后后面就悲剧了,后面发现数据量稍微大一点,速度就会很慢很慢。于是掏出自己的制胜法典,后来我在知识和海洋中获取到了两种靠谱的方法。下面一点一点讲。
磊哥,前几天在做项目demo的时候,使用雪花id或uuid作为Mysql主键,被老板怼了一顿!
前面一篇文章《案例| +1s导致的故障》介绍了因为开发同学对datetime值+1s的操作导致的问题。我们在复盘的时候讨论设置sql_mode为严格模式可行性。于是有了此文。
特别注意:mysql默认接受sql的大小是1048576(1M),即第三种方式若数据量超过1M会报如下异常:(可通过调整MySQL安装目录下的my.ini文件中[mysqld]段的"max_allowed_packet = 1M")
当需要成批插入或者更新记录时,可以采用Java的批量更新机制,这一机制允许多条语句一次性提交给数据库批量处 理。通常情况下比单独提交处理更有效率
最近有个需求解析一个订单文件,并且说明文件可达到千万条数据,每条数据大概在20个字段左右,每个字段使用逗号分隔,需要尽量在半小时内入库。
超出最大数据包限制了,可以通过调整max_allowed_packet限制来提高可以传输的内容,不过由于30万条数据超出太多,这个不可取,梭哈看来是不行了 😅😅😅
记得有一次我们小组code review,组长看了下我们批量插入是使用mybatis原生的xml foreach实现的,于是二话不说,拍桌子,说这有性能问题。叫我们直接使用mybatis-plus,可是为啥呢?怎么用,需要注意哪些地方,也没给我们说个明白。好吧,我们对这一块也没具体调研过,就直接按他的想法去实现了。性能有没有提升了好几倍呢,其实也没实践过,反正review过了。直到有一天。。。
大家好,这里是顶尖架构师栈!点击上方关注,添加“星标”,切勿错过每日干货分享,一起学习大厂前沿架构!
作者今天在开发一个后台发送消息的功能时,由于需要给多个用户发送消息,于是使用了 mybatis plus 提供的 saveBatch() 方法,在测试环境测试通过上预发布后,测试反应发送消息接口很慢得等 5、6 秒,于是我就登录预发布环境查看执行日志,发现是 mybatis plus 提供的 saveBatch() 方法执行很慢导致,于是也就有了本篇文章。
Mybatis系列目标:从入门开始开始掌握一个高级开发所需要的Mybatis技能。
performance_schema 是 MySQL 数据库中的一个内置的系统数据库,最早从MySQL5.5版本产生,这个数据库主要用于收集和存储与数据库性能相关的统计信息和指标。
本文只整理MySQL的自增字段方案,Oracle和SQL Server的自增长方案就不介绍了。
为什么需要分布式全局唯一ID以及分布式ID的业务需求?集群高并发情况下如何保证分布式唯一全局Id生成?
原文链接: 191119-SpringBoot系列教程JPA之指定id保存 前几天有位小伙伴问了一个很有意思的问题,使用 JPA 保存数据时,即便我指定了主键 id,但是新插入的数据主键却是 mysq
位类型:BIT BIT类型中存储的是二进制值,类似010110。 二进制字符串类型 长度 长度范围 占用空间 BIT(M) M 1 <= M <= 64 约为(M + 7)/8个字节 BIT类型,如果没有指定(M),默认是1位。这个1位,表示只能存1位的二进制值。这里(M)是表示二进制的位数,位数最小值为1,最大值为64。 CREATE TABLE test_bit1( f1 BIT, f2 BIT(5), f3 BIT(64) ); INSERT
> 公众号:[Java小咖秀](https://t.1yb.co/jwkk),网站:[javaxks.com](https://www.javaxks.com)
在MySQL中有一个配置参数eq_range_index_dive_limit,它的作用是一个等值查询(比如:in 查询),其等值条件数小于该配置参数,则查询成本分析使用扫描索引树的方式分析,如果大于等于该配置参数,则使用索引统计的方式分析。使用扫描索引树的方式分析在MySQL内部叫做index dives,使用索引统计的方式分析在MySQL内部叫做index statistics。
物联网平台背景,传感器采集频率干到了1000Hz,分了100多张表出来,还是把mysql干炸了。当前单表数据量在1000来w,从kafka上拉数据异步批量插入,每次插入数据量1500条,测试的时候还没问题,结果上线没多久,kafka服务器直接挂了,赶忙看日志,kafka服务器堆积了几十G的数据,再去看生产环境日志,发现到最后单次批量插入用时固定在10多秒,甚至20多秒,kafka直接把消费端踢出了消费组…从而kafka消息一直没有消费,总重导致kafka数据堆积挂掉了…
我们经常使用useGenerateKeys来返回自增主键,避免多一次查询。也会经常使用on duplicate key update,来进行insertOrUpdate,来避免先query 在insert/update。用起来很爽,但是经常踩坑,还不知为何。本篇就是深入分析获取自增主键的原理。
一、Mybatis执行插入语句后可以返回主键ID吗? 在想写什么内容的时候,正好看到一个基础面试题上有这个问题,就把它记录下来了。 👨💻面试官:你说Mybatis执行插入语句后可以返回主键ID吗??如果能的话,能否实现一下。 🙋我:当然是可以的,连JDBC都能做到的事情,Mybatis也能做到的。 开始敲代码… 1.1、Mysql数据库设置ID自增情况 <insert id="insertUser" parameterType="com.crush.mybatisplus.entity.User">
摘要: 原创出处 www.bysocket.com 「泥瓦匠BYSocket 」欢迎转载,保留摘要,谢谢!
mybatis-plus的 IService接口 默认提供 saveBatch批量插入,也是唯一一个默认批量插入,在数据量不是很大的情况下可以直接使用,但这种是一条一条执行的效率上会有一定的瓶颈,今天我们就来研究研究mybatis-plus中的批量插入。
来源:猿天地 链接:http://cxytiandi.com/blog/detail/1897 用了mongodb之后要是问我mongo和mysql的区别在哪里?第一点我就会想到的是没有自增ID,mongo里面是ObjectId。今天我们就自己来实现自增的ID。 像mysql这种数据库是内部实现了自增ID,今天我们要自己实现一个,不知道大家有没有具体的思路。 当然mongodb官网上也提供了一种实现的方法,就是自定义一个获取自增ID的方法,然后每次插入的时候就去获取下一个ID,再插入到集合中。 我们既然用了
rpm -ivh MySQL-server-5.5.49-1.linux2.6.i386.rpm
Greenplum(以下简称GP)支持多种数据导入方法,比如GP自带的gpfdist,通过gpfdist+外部表的形式将远端服务器上的数据并行导入到GP中,再比如GP自带的COPY命令,能够将本地的数据按照一定格式导入到GP中。除此之外,还有一些比较优秀的第三方导入工具,本文主要介绍DataX。
(Clob的写入和读取-java)更新数据库报错:SQL Error: 1461, SQLState: 72000 ORA-01461: 仅能绑定要插入 LONG 列的 LONG 值
连接对象内部其实包含了Socket对象,是一个远程的连接接,比较耗时!这是Connection对象管理的一个特点。实际开发中,为了提高效率,都会使用连接池来管理连接对象。
领取专属 10元无门槛券
手把手带您无忧上云