一、缘起 mysql主从复制,读写分离是互联网用的非常多的mysql架构,主从复制最令人诟病的地方就是,在数据量较大并发量较大的场景下,主从延时会比较严重。 为什么mysql主从延时这么大? 回答:
我的数据库是5.7版本,我这里下载5.1.47的驱动了,当然如果你们的数据库是8.0以上的版本,那么就下相应的版本就行
GIT地址:https://gitee.com/michlee/mysql-sync
在生产业务常有将 MySQL 数据同步到 ES 的需求,如果需要很高的定制化,往往需要开发同步程序用于处理数据。但没有特殊业务需求,官方提供的Logstash 就很有优势了。 在使用 Logstash 我们应先了解其特性,再决定是否使用:
作者|高俊 编辑|邓艳琴 在今年 2 月份的 QCon 全球软件开发大会(北京站)上,Apache SeaTunnel PPMC Member 高俊 分享了题为《EtLT 架构下的数据集成平台—Apache SeaTunnel》,本文由此整理,复制链接下载完整 PPT:https://qcon.infoq.cn/202302/beijing/presentation/5173 此次分享的主要内容分为 6 块,分别是—— 1. ETL 到 EtLT 架构演进 2. 数据集成领域的痛点 & 常见的解决方
有赞是提供商家 SAAS 服务,随着越来越多的商家使用有赞,搜索或详情的需求也日益增长,针对需求及场景,之前提到过的订单管理架构演变及 AKF 架构等在这两篇文章里已经有所体现,而这些数据的查询来自于不同的 NoSQL,怎么同步这些非实时存储系统将是一个很有趣的事情。
数据库的种类越来越多不知道大家最近有没有这样的体会,时序性的数据库,列式数据库,OLAP类型的数据库等等, 数据库从概念上慢慢已经超越了之前的一些思维模式的限定。
摘要:本文介绍了 Flink CDC 利用 Kafka 进行 CDC 多源合并和下游同步更新的实践分享。内容包括:
MySQL主从复制,读写分离是互联网常见的数据库架构,该架构最令人诟病的地方就是,在数据量较大并发量较大的场景下,主从延时会比较严重。
注意,类似的问题是业务问题,如果要实际落地分析,需要进一步核实确认当前的数据建模。
在MySQL中,查询操作通常会涉及到联结不同表格,而JOIN命令则在这一过程中扮演了关键角色。在JOIN操作中,我们通常会使用三种不同的方式,分别是内连接、左连接以及右连接。
CDC(Change Data Capture)从广义上讲所有能够捕获变更数据的技术都可以称为CDC,但本篇文章中对CDC的定义限定为以非侵入的方式实时捕获数据库的变更数据。例如:通过解析MySQL数据库的Binlog日志捕获变更数据,而不是通过SQL Query源表捕获变更数据。Hudi 作为最热的数据湖技术框架之一, 用于构建具有增量数据处理管道的流式数据湖。其核心的能力包括对象存储上数据行级别的快速更新和删除,增量查询(Incremental queries,Time Travel),小文件管理和查询优化(Clustering,Compactions,Built-in metadata),ACID和并发写支持。Hudi不是一个Server,它本身不存储数据,也不是计算引擎,不提供计算能力。其数据存储在S3(也支持其它对象存储和HDFS),Hudi来决定数据以什么格式存储在S3(Parquet,Avro,…), 什么方式组织数据能让实时摄入的同时支持更新,删除,ACID等特性。Hudi通过Spark,Flink计算引擎提供数据写入, 计算能力,同时也提供与OLAP引擎集成的能力,使OLAP引擎能够查询Hudi表。从使用上看Hudi就是一个JAR包,启动Spark, Flink作业的时候带上这个JAR包即可。Amazon EMR 上的Spark,Flink,Presto ,Trino原生集成Hudi, 且EMR的Runtime在Spark,Presto引擎上相比开源有2倍以上的性能提升。在多库多表的场景下(比如:百级别库表),当我们需要将数据库(mysql,postgres,sqlserver,oracle,mongodb等)中的数据通过CDC的方式以分钟级别(1minute+)延迟写入Hudi,并以增量查询的方式构建数仓层次,对数据进行实时高效的查询分析时。我们要解决三个问题,第一,如何使用统一的代码完成百级别库表CDC数据并行写入Hudi,降低开发维护成本。第二,源端Schema变更如何同步到Hudi表。第三,使用Hudi增量查询构建数仓层次比如ODS->DWD->DWS(各层均是Hudi表),DWS层的增量聚合如何实现。本篇文章推荐的方案是: 使用Flink CDC DataStream API(非SQL)先将CDC数据写入Kafka,而不是直接通过Flink SQL写入到Hudi表,主要原因如下,第一,在多库表且Schema不同的场景下,使用SQL的方式会在源端建立多个CDC同步线程,对源端造成压力,影响同步性能。第二,没有MSK做CDC数据上下游的解耦和数据缓冲层,下游的多端消费和数据回溯比较困难。CDC数据写入到MSK后,推荐使用Spark Structured Streaming DataFrame API或者Flink StatementSet 封装多库表的写入逻辑,但如果需要源端Schema变更自动同步到Hudi表,使用Spark Structured Streaming DataFrame API实现更为简单,使用Flink则需要基于HoodieFlinkStreamer做额外的开发。Hudi增量ETL在DWS层需要数据聚合的场景的下,可以通过Flink Streaming Read将Hudi作为一个无界流,通过Flink计算引擎完成数据实时聚合计算写入到Hudi表。
工作之中,一些简单的数据处理工作都会选择用Excel完成,其实微软给我们开了个玩笑,它将一些好用的功能给隐藏起来了,比如“数据分析”,“规划求解”工具栏。我也是在使用mac之后才发现,原来微软是提供这两个工具栏的,想想以前,真是被骗了好久……
墨墨导读:经常会看到看到cpu 使用率非常高的情况。在这种情况下,资源的使用监控分析才是性能故障分析的根本首要任务,通过这些分析,理解服务器如何运行,资源损耗在哪些方面对问题进行故障诊断是非常有价值有意义的。
前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。
单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。
本周赠书《性能之巅》第2版 前段时间在跟其他公司DBA交流时谈到了mysql跟PG之间在多表关联查询上的一些区别,相比之下mysql只有一种表连接类型:嵌套循环连接(nested-loop),不支持排序-合并连接(sort-merge join)与散列连接(hash join),而PG是都支持的,而且mysql是往简单化方向去设计的,如果多个表关联查询(超过3张表)效率上是比不上PG的。 1. 摘要 不超过3层是为了效率。 更通用 ,更好为了分布式做准备。 下面也对mysql多表关联这个特性简单探讨下~
如果条件允许,demo的内容是:通过logstash 同步日志或数据库(oracle、mysql)表的数据到 Elasticsearch,然后通过kibana进行可视化。
集中, 转换和存储数据, logstach是免费且开放的服务器端数据处理管道, 能够从多个来源采集数据,转换数据,然后将数据发送到您最喜欢的"存储库"中
实时读取库表结构元数据信息,比如表名、字段名、字段类型、注释等,选中修改后的表,点击一键生成,代码成即可提现出表结构的变化。
作者:王小雪。滴滴出行架构师,原快的打车架构师。 来源:程序员杂志 某知名打车平台从随着业务的发展,系统访问量迅速膨胀,很多复杂的问题要在短时间内解决,且不能影响线上业务,这是比较大的挑战,本文将会阐
摘要:本文整理自 StarRocks 社区技术布道师谢寅,在 Flink Forward Asia 2022 实时湖仓的分享。本篇内容主要分为五个部分:
多表查询是指基于两个和两个以上的表查询.在实际应用中,查询单个表可能不能满足你的需求.
Apache SeaTunnel 是一个非常易用的超高性能分布式数据集成产品,支持海量数据的离线及实时同步。每天可稳定高效同步万亿级数据,已应用于数百家企业生产,也是首个由国人主导贡献到 Apache 基金会的数据集成顶级项目。
MySQL 作为一种广泛使用的关系型数据库管理系统,拥有丰富的功能集。然而,在日常使用中,有许多功能可能被忽视或误解。本篇文章将对一些 MySQL 中较为冷门的功能进行扫盲,探讨它们为何不常被使用以及在什么情况下可以考虑使用这些功能。
在实时数据仓库建设或迁移的过程中,用户必须考虑如何高效便捷将关系数据库数据同步到实时数仓中来,Apache Doris 用户也面临这样的挑战。而对于从 Oracle 到 Doris 的数据同步,通常会用到以下两种常见的同步方式:
如果此时在主上有大量的insert操作,可以在slave上执行> select * from mysql.slave_worker_info\G 应该可以查看到worker_id在不断变化,说明是多线程复制在起作用了。
一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发。简单说,在master上是并发模式(以InnoDB引擎为主)完成事务提交的,而在slave上,复制线程只有一个sql thread用于binlog的apply,所以难怪slave在高并发时会远落后master。 ORACLE MySQL 5.6版本开始支持多线程复制,配置选项 slave_parallel_workers 即可实现在slave上多线程并发复制。不过,它只能支持一个实例下多个 databa
本文中的问题精选自上期【你问我答】——数据库专题中读者的提问。【你问我答】是由美团点评技术团队推出的线上问答服务,你在工作学习中遇到的各种技术问题,都可以通过我们微信公众号发问,我们5000+工程师会义务为你解答,欢迎大家踊跃提问。高质量、定义清晰的问题会优先获得解答。 Q1:能不能推荐几本关于SQL的书籍。谢谢!谢谢! A:推荐图灵出的《SQL必知必会(第4版)》,这也是Amazon上最畅销的SQL图书的中文版,写得很明快,概念非常清楚。这本书用来学习关系型数据库也很不错,至少基本概念比大部头的教材说得
如果你有机会需要在公司内部,做一次Elasticsearch 技术应用分享。如何才能讲的逼格高,又接地气,那么建议从以下几个方面展开,大家有好的想法,也欢迎留言交流。
快的打车从2013年年底到2014年下半年,系统访问量迅速膨胀,很多复杂的问题要在短时间内解决,且不能影响线上业务,这是比较大的挑战,看下打车架构演变过程遇到的一些有代表性的问题和解决方案。
1.客户端与服务端通信会遇到哪些问题? 2.怎样基于Storm和HBase打造实时监控平台? 3.怎样对Web系统进行分布式改造? 快的打车从2013年年底到2014年下半年,系统访问量迅速膨胀,很多
一般Mysql主从复制有三个线程参与,都是单线程:Binlog Dump(主) -> IO Thread (从) -> SQL Thread(从)。
mysql是一个高度定制化的数据库系统,提供了很多配置参数,一般都需要根据应用程序的特性和硬件情况对mysql做配置优化,windows配置文件为my.ini,linux为my.cnf
在面试中,SQL调优是一个常见的问题,通过这个问题可以考察应聘者对于提升SQL性能的理解和掌握程度。通常来说,SQL调优需要按照以下步骤展开。
一般而言,slave相对master延迟较大,其根本原因就是slave上的复制线程没办法真正做到并发。简单说,在master上是并发模式(以InnoDB引擎为主)完成事务提交的,而在slave上,复制线程只有一个sql thread用于binlog的apply,所以难怪slave在高并发时会远落后master。
最近在做积木系统2.0,这次使用的nodejs web框架是团队统一的hapi.js,而数据库依然是mysql,ORM 框架选用有着6000+ stars 的 sequelize.js,hapi-sequelize插件对sequelize做了很简单的封装,可以让我们很自如地在hapi中游走,比如配置和调用。
文章目录 MySQL_联合-子查询-视图-事务-索引 1.联合查询 关键字:`union` 2.多表查询 多表查询的分类 内连接(inner join ... on ..) 外连接(outer join) 思考: 交叉连接(cross join) 自然连接(natural join) using函数 练习 3.子查询 in | not in some | any | all exists | not exists 子查询分组 4.视图 创建视图 查询 修改视图 查看创建视图的语句 查看视图的结构 查看所有的
在Spring中,事务的传播机制定义了在多个事务方法之间如何传播事务。当一个方法调用另一个方法时,如果被调用方法需要事务支持,那么事务的传播机制决定了是否使用调用方的事务或创建一个新的事务。
MySQL 是一个强大的关系型数据库管理系统,多表查询是数据库操作中的重要部分之一。多表查询允许您从多个表中检索和操作数据,以满足复杂的数据需求。本文将介绍 MySQL 多表查询的基本概念、语法和示例,以及一些常见的多表查询场景。
本文作者:IMWeb zzbozheng 原文出处:IMWeb社区 未经同意,禁止转载 Node.js ORM 框架 sequelize 实践 最近在做积木系统2.0,这次使用的nodejs
之前我们给大家介绍过MySQL子查询与多表联合查询 MySQL子查询的基本使用方法(四)、关于MySQL多表联合查询,你真的会用吗?、关于MySQL内连接与外连接用法,全都在这里了!本节课我们想讲讲多表联查询与子查询的区别与联系。
随着 Elastic 的上市,ELK Stack 不仅在 BAT 的大公司得到长足的发展,而且在各个中小公司都得到非常广泛的应用,甚至连“婚庆网站”都开始使用 Elasticsearch 了。随之而来的是 Elasticsearch 相关部署、框架、性能优化的文章早已铺天盖地。
Elasticsearch 6.3 发布SQL模块作为C-Pack的一部分使用 kabana官方工具查询 Dev Tools - console 查看 POST /_xpack/sql?form
作者简介 荣华,携程高级研发经理,专注于后端技术项目研发管理。 军威,携程软件技术专家,负责分布式缓存系统开发 & 存储架构迁移项目。 金永,携程资深软件工程师,专注于实时计算,数据分析工程。 俊强,携程高级后端开发工程师,拥有丰富SQLServer使用经验。 前言 携程酒店订单系统的存储设计从1999年收录第一单以来,已经完成了从单一SQLServer数据库到多IDC容灾、完成分库分表等多个阶段,在见证了大量业务奇迹的同时,也开始逐渐暴露出老骥伏枥的心有余而力不足之态。基于更高稳定性与高效成本控制而设计
相当一部分应用的日志是保存在数据库之中的,这些陈旧又稳定的应用在支撑着业务的运行。它们产生的日志通常来说也是有其价值的,但是如果能够融入到目前较为通用的 Elasticsearch 当中的话,可能有助于降低运维工作量,防止信息孤岛,并且进一步挖掘既有应用和业务的商业价值。
当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了。分表的目的就在于此,减小数据库的负担,缩短查询时间。
数据库中间件承担应用与数据库之间的粘合与润滑,数据库中间件设计的合理应用跑起来就丝滑,否则会拉胯。本文就常见数据库组件相关的功能设计点做个归纳整理:
领取专属 10元无门槛券
手把手带您无忧上云