可以在 mysql 客户端中,使用 show engines; 命令可以查看MySQL支持的引擎:
比如:多事务的执行方法,当不止一个请求到来时候,前面都还没执行以及有许多工作需要完成这时候常常是串行执行、交叉并发执行、同时并发执行;
buffer pool 是主内存中的一块儿存储区域,用于存储访问的表及索引数据。这样从内存中直接访问获取使用的数据可以极大的提升访问效率。在一些特殊专用的服务里,几乎 80% 的内存区域都被赋于 buffer pool。
数据分析系列——SQL数据库 总第49篇 ▼ 本文知识只是用作于常用的数据分析中,并未涉及专业数据库搭建等知识。全篇分为四个部分:初识数据库、数据库的操作、数据库存储数据的单元即表的基本操作、表的操作
冷备份: 这些备份在用户不能访问数据时进行,因此无法读取或修改数据。这些脱机备份会阻止执行任何使用数据的活动。这些类型的备份不会干扰正常运行的系统的性能。但是,对于某些应用程序,会无法接受必须在一段较长的时间里锁定或完全阻止用户访问数据。
今天在说Mysql查询优化之前,我先说一个常见的面试题,并带着问题深入探讨研究。这样会让大家有更深入的理解。
存储引擎:MySQL中的数据、索引以及其他对象是如何存储的,是一套文件系统的实现。
数据库存储引擎是数据库底层软件组织,数据库管理系统(DBMS)使用数据引擎进行创建、查询、更新和删除数据。不同的存储引擎提供不同的存储机制、索引技巧、锁定水平等功能,使用不同的存储引擎,还可以 获得特定的功能。现在许多不同的数据库管理系统都支持多种不同的数据引擎。MySql的核心就是存储引擎。
MySQL有9种存储引擎,不同的引擎,适合不同的场景,我们最常用的,可能就是InnoDB,应该是从5.5开始,就成为了MySQL的默认存储引擎。
数据库存储引擎是数据库底层软件组织,数据库管理系统(DBMS)使用数据引擎进行创建,查询,更新和删除数据 不同的存储引擎提供不同的存储机制,索引技巧,锁定水平等功能,使用不同的存储引擎,还可以获得特定的功能,现在许多不同的数据库管理系统都支持多种不同的数据引擎
大部分数据库都有存储数据文件扩展的功能,ORACLE 可以扩展你的表空间,SQL SERVER 可以多建立几个 FILEGROUP, PostgreSQL 也可以建立相关类似的扩展。这些都是对付当前存储空间不足,将数据文件跨物理位置进行存储。
墨墨导读:经常会看到看到cpu 使用率非常高的情况。在这种情况下,资源的使用监控分析才是性能故障分析的根本首要任务,通过这些分析,理解服务器如何运行,资源损耗在哪些方面对问题进行故障诊断是非常有价值有意义的。
这样数据库中数据丢失或者出错的情况下,就可以对数据进行还原,从而最大限度的降低损失。
不同于传统的物联网终端,低成本ZETag云标签更多用于物的定位与追踪,同时,还有次抛等新的应用场景。因此,ZETag云标签的数量远远大于传统的物联网终端,万级别标签每客户将是业务常态,可以预估ZETag云平台需要管理的标签量将在百万到千万级,每天需要保存的上报数据将达到亿级,这对平台数据存储的写性能、扩展性以及存储成本将是一个巨大的考验。
在做JAVA开发中,通过指令重拍会对代码做一定程度的优化,在数据库中 MYSQL优化器也做了一系列相关优化工作,下面要介绍的就是数据库做的内置优化
一,什么是mysql分表,分区 什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看mysql分表的3种方法 什么是分区,分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上,具体请参考mysql分区功能详细介绍,以及实例 二,mysql分表和分区有什么区别呢 1,实现方式上 a),mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完正的一张表,都对应三个文件,一个.MYD数据文件,.MYI索引文件,.frm表结构文件。 [root@Black
什么是分表,从表面意思上看呢,就是把一张表分成N多个小表,具体请看mysql分表的3种方法
当我们在执行mysqladmin status 命令或连接通过mysql客户端连接到实例后,执行\s的时候,应该看到类似以下的内容:
虽然使用Explain不能够马上调优我们的SQL,它也不能给予我们一些调整建议,但是它能够让我们了解MySQL 优化器是如何执行SQL 语句的
0.SQL标准的执行流程(select) (8) SELECT (9) DISTINCT (11) <TOP_specification> <select_list> (1) FROM <left_table> (3) <join_type> JOIN <right_table> (2) ON <join_condition> (4) WHERE <where_condition> (5) GROUP BY <group_by_list> (6) WITH {CUBE ROLLUP} (7)
现在xtrabackup版本升级到了8.0,但是只对mysql8.0才有支持, 我们这还是使用2.4, 但是2.4相比之前的2.1有了比较大的变化:innobackupex 功能全部集成到 xtrabackup 里面,只有一个 binary,另外为了使用上的兼容考虑,innobackupex 作为 xtrabackup 的一个软链,即 xtrabackup 现在支持非Innodb表备份,并且 Innobackupex 在下一版本中移除(8.0已经移除了),建议通过xtrabackup替换innobackupex。还有其他的一些新特性,更多的说明可以看xtrabackup新版详细说明。
xtrabackup是一个对InnoDB做数据备份的工具,支持在线热备份(备份时不影响数据读写),是商业备份工具InnoDB Hotbackup的一个很好的替代品。xtrabackup有两个主要的工具:xtrabackup、innobackupex,xtrabackup只能备份InnoDB和XtraDB两种数据表,且只备份数据文件(.ibd),并不备份数据表结构文件(.frm),同时不能备份MyISAM数据表,所以使用xtrabackup恢复的时候,你必须有对应表结构文件(.frm);innobackupex-1.3.1则封装了xtrabackup,是一个脚本封装,所以能同时备份处理InnoDB和MyISAM,但在处理MyISAM时需要加一个读锁。
mysql高并发的解决方法有:优化SQL语句,优化数据库字段,加缓存,分区表,读写分离以及垂直拆分,解耦模块,水平切分等。
如何加快查询,最直接有效的办法就是增加索引,在不使用索引的情况下试图采用其他方式加快查询就是在浪费时间。本文先介绍下MySQL索引的基本数据结构,再对索引的基本规则做下总结。
SIMPLE(simple):简单SELECT(不使用UNION或子查询)。 PRIMARY(primary):子查询中最外层查询,查询中若包含任何复杂的子部分,最外层的select被标记为PRIMARY。 UNION(union):UNION中的第二个或后面的SELECT语句。 DEPENDENT UNION(dependent union):UNION中的第二个或后面的SELECT语句,取决于外面的查询。 UNION RESULT(union result):UNION的结果,union语句中第二个select开始后面所有select。 SUBQUERY(subquery):子查询中的第一个SELECT,结果不依赖于外部查询。 DEPENDENT SUBQUERY(dependent subquery):子查询中的第一个SELECT,依赖于外部查询。 DERIVED(derived):派生表的SELECT (FROM子句的子查询)。 UNCACHEABLE SUBQUERY(uncacheable subquery):(一个子查询的结果不能被缓存,必须重新评估外链接的第一行)
爱可生华东交付部 DBA,主要负责 MySQL 日常问题处理及 DMP 产品支持。爱好跳舞,追剧。
MySQL的存储引擎架构将查询处理与数据的存储/提取相分离。下面是MySQL的逻辑架构图:
工作之中,一些简单的数据处理工作都会选择用Excel完成,其实微软给我们开了个玩笑,它将一些好用的功能给隐藏起来了,比如“数据分析”,“规划求解”工具栏。我也是在使用mac之后才发现,原来微软是提供这两个工具栏的,想想以前,真是被骗了好久……
存储引擎的实质就是如何实现存储数据,为存储数据建立索引以及查询、更改、删除数据等技术实现的方法。
利用Linux的LVM技术来实现热备份,将MySQL的数据目录放到LVM逻辑卷上,然后通过LVM快照技术备份逻辑卷的内容。第一次备份是全量备份,之后的备份都是增量备份。在还原时,将快照中的数据目录恢复到ySQL的数据目录即可。
1. 优化SQL 1)通过show status了解各种sql的执行频率 show status like 'Com_%' 了解 Com_select,Com_insert 的执行次数 2) 通过Explain分析低效的sql语句 3) 建立合适的索引 4) 通过show status like 'Handler_%'查看索引的使用情况 handler_read_key:根据索引读取行的请求数。如果该值
SQL标准在数据存储的物理方面没有提供太多的指南。SQL语言的使用独立于它所使用的任何数据结构或图表、表、行或列下的介质。但是,大部分高级数据库管理系统已经开发了一些根据文件系统、硬件或者这两者来确定将要用于存储特定数据块物理位置的方法。在MySQL中,InnoDB存储引擎长期支持表空间的概念,并且MySQL服务器甚至在分区引入之前,就能配置为存储不同的数据库使用不同的物理路径(关于如何配置的解释,请参见7.6.1节,“使用符号链接”)。
单库单表是最常见的数据库设计,例如,有一张用户(user)表放在数据库db中,所有的用户都可以在db库中的user表中查到。
导语 | 伴随着Snowflake的成功,重新激活了数据分析市场,大大小小的创业公司不断创立,各种OLAP的开源产品层出不穷。其中,ClickHouse凭借优秀的性能在用户行为分析、ABTest、在线报表等多个领域大放异彩,但其在功能特性、易用性等方面都还有较多不足。同时,在OLTP、对象存储、Elasticsearch、MongoDB等系统中累积了大量数据和分析需求,不能较好的得到满足。因此,我们希望以Clickhouse为基础,借鉴Snowflake的设计思路,打造一款高性能的云原生OLAP数仓,为用户提供多数据源、多场景下的一站式数据分析平台。
MySQL冷备、mysqldump、MySQL热拷贝都无法实现对数据库进行增量备份。在实际生产环境中增量备份是非常实用的,如果数据大于50G或100G,存储空间足够的情况下,可以每天进行完整备份,如果每天产生的数据量较大,需要定制数据备份策略。例如每周实用完整备份,周一到周六实用增量备份。而Percona-Xtrabackup就是为了实现增量备份而出现的一款主流备份工具,xtrabakackup有2个工具,分别是xtrabakup、innobakupe。
在InnoDB内部会维护一个redo日志文件,我们也可以叫做事务日志文件。事务日志会存储每一个InnoDB表数据的记录修改。当InnoDB启动时,InnoDB会检查数据文件和事务日志,并执行两个步骤:它应用(前滚)已经提交的事务日志到数据文件,并将修改过但没有提交的数据进行回滚操作。
普通索引: 即针对数据库表创建索引; 唯一索引: 与普通索引类似,不同的就是:MySQL数据库索引列的值必须唯一,但允许有空值; 主键索引: 它是一种特殊的唯一索引,不允许有空值。一般是在建表的时候同时创建主键索引; 组合索引: 为了进一步榨取MySQL的效率,就要考虑建立组合索引。即将数据库表中的多个字段联合起来作为一个组合索引。
相信这内连接,左连接什么的大家都比较熟悉了,当然还有左外连接什么的,基本用不上我就不贴出来了。这图只是让大家回忆一下,各种连接查询。 然后要告诉大家的是,需要根据查询的情况,想好使用哪种连接方式效率更高。
本文来源:https://www.percona.com/blog/,爱可生开源社区翻译。
最近遇到一个MySQL数据导入时候遇到问题,先来看下问题产生的具体报错信息如下所示:
5.7以前,该项是explain partitions显示的选项; 5.7以后成为了默认选项.
使表占用尽量少的磁盘空间。减少磁盘I/O次数及读取数据量是提升性能的基础原则。表越小,数据读写处理时则需要更少的内存,同时,小表的索引占用也相对小,索引处理也更加快速。
MYSQL数据库-复合查询 零、前言 一、基本查询 二、多表查询 三、自连接 四、子查询 1、单行子查询 2、多行子查询 3、多列子查询 3、在from子句中使用子查询 五、合并查询 1、union 2、union all 零、前言 本章主要讲解学习MYSQL数据库中的复合查询,前面我们讲解的mysql表的查询都是对一张表进行查询,在实际开发中这远远不够 一、基本查询 示例: 查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J 按照部门号升序而雇员的工资降序排序
上一小节提到了数据备份是指将数据库中数据存储的相关文件进行拷贝,而这些文件有很多,所以让我们来简单认识下MySQL中与数据相关的文件。
之前我们给大家介绍过MySQL子查询与多表联合查询 MySQL子查询的基本使用方法(四)、关于MySQL多表联合查询,你真的会用吗?、关于MySQL内连接与外连接用法,全都在这里了!本节课我们想讲讲多表联查询与子查询的区别与联系。
与许多其他事务数据系统一样,索引一直是 Apache Hudi 不可或缺的一部分,并且与普通表格式抽象不同。在这篇博客中,我们讨论了我们如何重新构想索引并在 Apache Hudi 0.11.0 版本中构建新的多模式索引,这是用于 Lakehouse 架构的首创高性能索引子系统,以优化查询和写入事务,尤其是对于大宽表而言。
1. 做灾难恢复:对损坏的数据进行恢复和还原 2. 需求改变:因需求改变而需要把数据还原到改变以前测试:测试新功能是否可用
WAL(Write-Ahead Logging)技术是一种用于数据库系统的日志管理方法,它主要用于确保数据的完整性和恢复能力。在WAL技术中,所有的修改(事务)都会先被写入到日志中,然后才会被应用到数据库文件上。这样做的目的是为了在发生故障时,可以使用这些日志来恢复数据库到最后一次一致的状态。
领取专属 10元无门槛券
手把手带您无忧上云