1、tableau连接mysql 2、tableau常用组件的学习 1)基本筛选器(类似mysql中的where) ① 基本筛选器——维度筛选器 ② 基本筛选器——度量筛选器 ③ 基本筛选器——日期筛选器(实际就是维度筛选器) 2)上下文筛选器(类似于mysql中的and) 3)条件筛选器 4)tableau顶部筛选器(类似于mysql中的limit) 5)tableau通配符筛选器(类似于mysql中的like) 6)tableau中的排序问题(类似于mysql中的order by) 7)字段的合并、拆分与分层 8)分组:数据源分组、文件夹分组 9)计算字段(很重要) 10)参数的使用(以前不太会,好好看看) 11)集合的使用(以前不太会,好好看看)
数据库范式是确保数据库结构合理,满足各种查询需要、避免数据库操作异常的数据库设计方式。满足范式要求的表,称为规范化表,范式产生于20世纪70年代初,一般表设计满足前三范式就可以,在这里简单介绍一下前三范式。
总结:最主要的优化策略还是索引优化和SQL优化,之后就是再调整下Mysql的配置参数,想读写分离、分库分表在系统架构设计的时候就需要确定,后续变更的成本太高。
垂直拆分是指数据表列的拆分,把一张列比较多的表拆分为多张表。表的记录并不多,但是字段却很长,表占用空间很大,检索表的时候需要执行大量的IO,严重降低了性能。这时需要把大的字段拆分到另一个表,并且该表与原表是一对一的关系。
http://mini.eastday.com/mobile/170809003639242.html
主机:localhost,端口口:3306,用户名:root,密码:123456。
我们都知道,随着业务量的增长,数据量也会随之增加,这个时候就需要关注业务大表,因为大表会影响查询性能,DDL变更时间很长,影响业务的可用性,同时导致从库延迟很大,如果业务做了读写分离,导致用户重复操作产生脏数据,例如重复下单。
最近听了公司里的同事做的技术分享,然后觉得对自己还是挺有帮助的。都是一些日常需要注意的地方,我们目前在开发过程中,其实用不到MySQL太深的内容的。只是能适用我们日常开发的知识就可以了。所以我将自己的理解和学习总结也写出来,供大家一起分享。
除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量:
当然,本篇也是关于性能优化的,那性能优化就应该一把梭子吗?还是要符合一些规范和原则呢?
一般情况下我们创建的表对应一组存储文件,使用MyISAM存储引擎时是一个.MYI和.MYD文件,使用Innodb存储引擎时是一个.ibd和.frm(表结构)文件。
应尽量避免全表扫描,首先应考虑在 where 及 order by ,group by 涉及的列上建立索引
除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在 千万级以下,字符串为主的表在 五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量。
随着我们的系统用户不断增加,产出的内容和数据量将不断增长,单台数据库数据量因为过大,将会导致查询速率降低,严重影响用户体验。
接上篇,上篇主要是从字段类型,索引,SQL语句,参数配置,缓存等介绍了关于MySQL的优化,下面从表的设计,分库,分片,中间件,NoSQL等提供更多关于MySQL的优化。
当 MySQL 单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化。 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候 MySQL 单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT、SMALLINT、MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED; VARCHAR的
当MySQL单表记录数过大时,增删改查性能都会急剧下降,所以我们本文会提供一些优化参考,大家可以参考以下步骤来优化:
除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量。
|原文链接:https://segmentfault.com/a/1190000006158186
在MySQL数据库中,表设计的优劣同样对性能有非常重要的影响。本节将介绍表设计的优化方法,包括巧用多表关系、表结构设计优化和表拆分等。
当MySQL单表记录数过大时,增删改查性能都会急剧下降,可以参考以下步骤来优化: 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑、部署、运维的各种复杂度,一般以整型值为主的表在千万级以下,字符串为主的表在五百万以下是没有太大问题的。而事实上很多时候MySQL单表的性能依然有不少优化空间,甚至能正常支撑千万级以上的数据量: 字段 尽量使用TINYINT、SMALLINT、MEDIUM_INT作为整数类型而非INT,如果非负则加上UNSIGNED VARCHA
#path可修改为绝对或者相对路径 log-slow-queries=slow-log-path #l查询时间超过2s记录 long_query_time=2 #没有使用索引的查询记录 log-queries-not-using-indexes
在业务系统中,为了缓解磁盘IO及CPU的性能瓶颈,到底是垂直拆分,还是水平拆分;具体是分库,还是分表,都需要根据具体的业务需求具体分析。
如果一个表的字段较多,可以新建一个扩展表,将不常用或字段长度较大的字段拆分到扩展表中。
来源:https://www.jianshu.com/p/336f682e4b91
可以利用order by 子句完成随机抽取某些行的功能,他的原理就是order by rand()能够数据随机排序。
转载自 https://www.2cto.com/database/201709/676637.html
MySQL的数据量到达一定的限度之后,它的查询性能会下降,这不是调整几个参数就可以解决的,如果我们想要自己的数据库继续保证一个比较高的性能,那么分库分表在所难免。
查询当前服务器执行超过60s的SQL,可以通过脚本周期性的来执行这条SQL,就能查出有问题的SQL。
1.主要应用在门户网站首页广告信息的缓存。因为门户网站访问量较大,将广告缓存到redis中,可以降低数据库访问压力,提高查询性能。
1、为什么要分表? 数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。 mysql中有一种机制是表锁定和行锁定,是为了保证数据的完整性。表锁定表示你们都不能对这张表进行操作,必须等我对表操作完才行。行锁定也一样,别的sql必须等我对这条数据操作完了,才能对这条数据进行操作。当出现这种情况时,我们可以考虑分表或分区。
数据库数据越来越大,随之而来的是单个表中数据太多。以至于查询速度变慢,而且由于表的锁机制导致应用操作也搜到严重影响,出现了数据库性能瓶颈。
千万级大表如何优化,这是一个很有技术含量的问题,通常我们的直觉思维都会跳转到拆分或者数据分区,在此我想做一些补充和梳理,想和大家做一些这方面的经验总结,也欢迎大家提出建议。
大家好,这里记录,我每周读到的技术书籍、专栏、文章以及遇到的工作上的技术经历的思考,不见得都对,但开始思考总是好的。
数据库在业务体系不大的情况,一般都是单库出现,通过增加主从复制提高SLA。但当业务体量不断扩大,就需要考虑进行数据拆分来解决性能瓶颈问题。
索引是一种特殊的文件,它们包含着对数据表里所有记录的引用指针,相当于书本的目录。其作用就是加快数据的检索效率。常见索引类型有主键、唯一索引、复合索引、全文索引。
上文讲到,查询分离的方案存在三大不足,其中一个就是:当主数据量越来越大时,写操作会越来越缓慢。这个问题该如何解决呢?可以考虑分表分库。
按照数据表中某个字段的某种规则,将记录分散到多个库中,每个库该表中存储一部分记录,所有库中该表的记录并集,为该表所有记录的数据全集。
按照指定字符进行合并或拆分是经常碰到的场景,MySQL在合并的写法上比较简单,但是按指定字符拆分相对比较麻烦一点(也就是要多写一些字符)。本文将举例演示如何进行按照指定字符合并及拆分。
主从模式对于写少读多的场景确实非常大的优势,但是总会写操作达到瓶颈的时候,导致性能提不上去。
读写分离是让主库处理事务性增删改,而从库处理查操作。数据库复制来把事务性操作的数据变更同步到从库。
1、指数据列的分割,将列多的表分割成多个表。表格的记录虽然不多,但字段长,表格占有空间大。
举例:一个用户表有很多的属性,关联了很多数据,如果放到同一个表里面的话查询是方便了,但是效率不行。
在日常的开发工作中,除了JAVA相关的技术,打交道最多的就是Mysql数据库,当数据积累到一定程度,比如500W时就会难免出现一些慢sql,对数据库的优化方式有很多,比如通过增加合理的索引,今天我们来说下其中的垂直分表。
实践中,MySQL的优化主要涉及SQL语句及索引的优化、数据表结构的优化、系统配置的优化和硬件的优化四个方面,如下图所示:
领取专属 10元无门槛券
手把手带您无忧上云