如何设计最优的数据库表结构,如何建立最好的索引,以及如何扩展数据库的查询,这些对于高性能来说都是必不可少的。但是只有这些还不够,要获得良好的数据库性能,我们还要设计合理的数据库查询,如果查询设计的很糟糕,即使增加再多的只读从库,表结构设计的再合理,索引再合适,只要查询不能使用到这些东西,也无法实现高性能的查询。所以说查询优化,索引优化,库表结构优化需要齐头并进。
最近在某个群关于MYSQL 的一个优化的问题,让我必须写这篇文字,主要事情是一个同学提出MYSQL 相关的语句性能的问题,但是这个语句一看就不大像是搞基于MYSQL 开发有经验的人员撰写的,更像是ORACLE移植过来的语句,这边解释了一下关于MYSQL 语句优化的几种方法,基于MYSQL的数据库产品,不能将所有的语句优化都堆积到 MYSQL 数据库本身,而应是有步骤的,将一部分优化的方式迁移到程度端来操作,并提出优化后会产生多次访问数据库的情况。
每一个SQL都需要消耗一定的I/O资源,SQL执行的快慢直接决定了资源被占用时间的长短。假设业务要求每秒需要完成100条SQL的执行,而其中10条SQL执行时间过长,从而导致每秒只能完成90条SQL,所有新的SQL将进入排队等待,直接影响业务,然后用户就各种投诉来了。
1、临时开启慢查询日志(如果需要长时间开启,则需要更改mysql配置文件,第6点有介绍)
MySQL性能优化是一个老生常谈的问题,无论是在实际工作中还是面试中,都不可避免遇到相应的场景,下面博主就总结一些能够帮助大家解决这个问题的小技巧。
我们常见的数据库性能优化就是SQL语句优化,确实SQL优化是开发者接触到最多的也是最常有的优化手段。作为开发人员我们接触最多的也就是SQL语句的优化,SQL语句的优化除了调整SQL语句外更多的是通过添加索引来加速查询,表结构(合理设计字段、拆分字段到其它表、分表等)的优化也是我们优化的主要手段。
本文提要 从编码角度来优化数据层的话,我首先会去查一下项目中运行的sql语句,定位到瓶颈是否出现在这里,首先去优化sql语句,而慢sql就是其中的主要优化对象,对于慢sql,顾名思义就是花费较多执行时间的语句,它带来的影响也比较恶劣,首先是执行时间过长影响数据的返回速度,其次,慢sql的长时间执行也会消耗和占用mysql的系统资源,影响其他的sql语句执行,过多的慢sql极其影响性能,如果系统流量或者并发量较大的情况下,过多的执行慢sql很有可能造成mysql的死锁以致于mysql服务无法正常使用。 dr
slow_query_log_file 指定慢查询日志的存储路径及文件(默认情况下保存在MySQL的数据目录中)
Mysql占用CPU过高的时候,该从哪些方面下手进行优化? 占用CPU过高,可以做如下考虑: 1)一般来讲,排除高并发的因素,还是要找到导致你CPU过高的哪几条在执行的SQL,show processlist语句,查找负荷最重的SQL语句,优化该SQL,比如适当建立某字段的索引; 2)打开慢查询日志,将那些执行时间过长且占用资源过多的SQL拿来进行explain分析,导致CPU过高,多数是GroupBy、OrderBy排序问题所导致,然后慢慢进行优化改进。比如优化insert语句、优化group by语句、
慢查询日志是MySQL数据库的一个特殊的日志文件,记录了执行时间超过一定阈值的SQL语句和相关的信息。
通常,我们在回答 MySQL 数据库优化的相关问题时,一般会从三个层面来说明,分别是:
在应用的的开发过程中,由于初期数据量小,开发人员写 SQL 语句时更重视功能上的实现,但是
发现没有用到索引,type全是ALL,那么首先想到的就是建立一个索引,建立索引的字段当然是在where条件的字段。
点击上方“芋道源码”,选择“设为星标” 管她前浪,还是后浪? 能浪的浪,才是好浪! 每天 10:33 更新文章,每天掉亿点点头发... 源码精品专栏 原创 | Java 2021 超神之路,很肝~ 中文详细注释的开源项目 RPC 框架 Dubbo 源码解析 网络应用框架 Netty 源码解析 消息中间件 RocketMQ 源码解析 数据库中间件 Sharding-JDBC 和 MyCAT 源码解析 作业调度中间件 Elastic-Job 源码解析 分布式事务中间件 TCC-Transaction
对于数据库来说安装,部署几乎是一次性的。后期的管理和优化是持续性的工作。 对于MySQL来说,可以说90%问题都在SQL语句上面。从问题SQL的筛选和优化,在MySQL环境下常用哪些方式。(以下版本是MySQL8.0.23) MySQL优化前置知识基础
首先开启慢查询日志,由参数slow_query_log决定是否开启,在MySQL命令行下输入下面的命令:
MySQL作为全球最流行的数据库,相关从业者不计其数,可以说十个码农里至少有九个使用过MySQL。MySQL的开发人员或者DBA,经常使用EXPLAIN语句来查看SQL的执行计划。EXPLAIN的解读文章多如牛毛,每个开发人员对EXPLAIN结果都有自己的理解。然而,你真的会使用EXPLAIN吗?
这个sql的执行步骤如下: 1、查询出来d表中的某个id字段包含多个id值的所有的数据(因为此表是1-n的关系,所以需要去重,仅需要拿到不重复的id才可以继续下一个步骤);可以看到此步骤我把查询出来的多个值的结果给生成的了一个子表名为sss;
【温馨提示】由于公众号更改了推送规则,不再按照时间顺序排列,如果不想错过测试开发技术精心准备的的干货文章,请将测试开发技术设为“星标☆”,看完文章在文尾处点亮“在看”!
说起MySQL优化的话,想必大部分人都不陌生了。在我们的记忆储备里也早已记住了这些关键词:避免使用SELECT*、避免使用NULL值的判断、根据需求适当的建立索引、优化MySQL参数......但是你对于这些优化技巧是否真正的掌握了及其相应的工作原理是否吃透了呢?在我们的实际开发过程中你能充分应用到吗?我觉得还有待考察。所以,本文将详细介绍MySQL优化技巧以及其相应的技术原理,希望大家看完以后,能更清楚直接的了解这些优化方案,并应用到我们的工作岗位中。
在他们的技术咨询生涯中,最常碰到的三个性能相关的服务请求是:如何确认服务器是否达到了性能最佳的状态、找出某条语句为什么执行不够快,以及诊断被用户描述成“停顿”、“堆积”或“卡死”的某些间歇性疑难杂症。
本文主要讲述了如何定位 MySQL 的性能瓶颈,使用慢查询日志、explain 命令、MySQLdumpslow 工具等方法。首先介绍了慢查询日志的格式,以及通过慢查询日志定位性能问题的方法。其次,讲解了 explain 命令的使用方式,包括查看索引情况、查看查询计划等。最后,介绍了如何使用 MySQLdumpslow 工具来分析慢查询日志,并给出了一些优化建议。
当数据量比较大,若SQL语句写的不合适,会导致SQL的执行效率低,我们需要等待很长时间才能拿到结果
慢日志查询的主要功能就是,记录sql语句中超过设定的时间阈值的查询语句。例如,一条查询sql语句,我们设置的阈值为1s,当这条查询语句的执行时间超过了1s,则将被写入到慢查询配置的日志中.
一般有3个思考方向 1.根据慢日志定位慢查询sql 2.使用explain等工具分析sql执行计划 3.修改sql或者尽量让sql走索引
MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
我们都知道,我们每执行一次 SQL,数据库除了会返回执行结果以外,还会返回 SQL 执行耗时,以 MySQL 数据库为例,当我们开启了慢 SQL 监控开关后,默认配置下,当 SQL 的执行时长大于 10 秒,会被记录到慢 SQL 的日志文件中。
慢日志查询的主要功能就是,记录sql语句中超过设定的时间阈值的查询语句。例如,一条查询sql语句,我们设置的阈值为1s,当这条查询语句的执行时间超过了1s,则将被写入到慢查询配置的日志中. 慢查询主要是为了我们做sql语句的优化功能.
原文链接:http://www.toutiao.com/a6730869910135636494/
提到mysql查询优化,很多人脑海里可能会想到NOT NULL、合理索引、不使用select *、合适的数据类型等等,可是这些优化技巧是怎么来的?
mysql性能优化(九) mysql慢查询分析、优化索引和配置
而我们的连接器就是处理这个过程的,连接器的主要功能是负责跟客户端建立连接、获取权限、维持和管理连接,连接器在使用的过程中如果该用户的权限改变,是不会马上生效的,因为用户权限是在连接的时候读取的,只能重新连接才可以更新权限
MyISAM:默认的MySQL插件式存储引擎,它是在Web、数据仓储和其他应用环境下最常使用的存储引擎之一。
对于分区表的检索无非有两种,一种是带分区键,另一种则不带分区键。一般来讲检索条件带分区键则执行速度快,不带分区键则执行速度变慢。这种结论适应于大多数场景,但不能以偏概全,要针对不同的分区表定义来写最合适的 SQL 语句。用分区表的目的是为了减少 SQL 语句检索时的记录数,如果没有达到预期效果,则分区表只能带来副作用。接下来我列举几个经典的 SQL 语句:
最近在极客时间看丁奇大佬的《MySQL45讲》,真心觉得讲的不错,把其中获得的一些MySQL方向的经验整理整理分享给大家,有兴趣同学可以购买相关课程进行学习。
当然,本篇也是关于性能优化的,那性能优化就应该一把梭子吗?还是要符合一些规范和原则呢?
我们前几篇文章介绍了什么是索引,索引分析explain语法的用法,以及索引如何优化等文章,如果大家对这些知识点不熟悉,可以在历史文章里找一下。
在以MySQL为主要存储组件的业务系统中,MySQL的性能直接影响到应用的响应速度、用户体验和系统的可扩展性。因此,优化数据库的性能,特别是SQL查询的执行效率,成为了提升整个应用性能的关键环节。
文章目录 1. 导读 2. 撸它 2.1. 1. 连接器 2.2. 2. 查询缓存【废材,8.0 版本完全删除】 2.3. 3. 分析器 2.4. 4. 优化器 2.5. 5. 执行器 3. 总结 导读 Mysql在中小型企业中是个香饽饽,目前主流的数据库之一,几乎没有一个后端开发者不会使用的,但是作为一个老司机,仅仅会用真的不够。 今天陈某透过一个简单的查询语句来讲述在Mysql内部的执行过程。 select * from table where id=10; 撸它 首先通过一张图片来了解一下
昨天遇到一个问题, 200万的表里查询9万条数据, 耗时达63秒. 200万数据不算多, 查询9万也还好. 怎么用了这么长的时间呢? 问题是一句非常简单的sql. select * from tk_t
使⽤ EXPLAIN 判断 SQL 语句是否合理使用索引,尽量避免 extra 列出现:Using File Sort、Using Temporary 等。
马上十一、中秋双节,很多客户开始做节日活动,基本都有一个共性需求:活动期间,流量预计翻N备,由此引发了一轮MySQL的容量治理与保障。
最近公司项目添加新功能,上线后发现有些功能的列表查询时间很久。原因是新功能用到旧功能的接口,而这些旧接口的 SQL 查询语句关联5,6张表且编写不够规范,导致 MySQL 在执行 SQL 语句时索引失效,进行全表扫描。原本负责优化的同事有事请假回家,因此优化查询数据的问题落在笔者手中。笔者在查阅网上 SQL 优化的资料后成功解决了问题,在此从==全局角度==记录和总结 MySQL 查询优化相关技巧。
所谓的性能优化,一般针对的是MySQL查询的优化。既然是优化查询,我们自然要先知道查询操作要经过哪些环节,然后思考可以在哪些环节进行优化。
领取专属 10元无门槛券
手把手带您无忧上云