首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    spark分析网吧同行朋友思路

    你好,我们现在正好遇到一个spark的问题。 在mysql库中有2.5kw网吧轨迹数据, 需要计算同行关系:计算两人在相同网吧十分钟前后上下网三次及以上 (如:a和b在19号十分钟前后出现在了A网吧,又在21号十分钟前后出现在了B网吧, 再在22号十分钟前后出现在了D网吧) 就需要保留他们的身份ID和一起上下网的次数。 2.5kw轨迹中有8k+网吧请问有什么思路吗? 如果flink有更好的处理方式也可以。 使用用一个mysql的连接器,但是这东西需要配置一个分区列。 直接用的网吧编号。这样会分8000多分区(而且后面的逻辑也没有用到这个分区列), 是不是有问题?今天测试了一下。 两个网吧,3w多数据,两个小时没跑完。。 (我们是先用连接器抽出数据,按照网吧分组计算单次然后聚合筛选3次及以上的) 网吧数据从几条到几万条不等。

    01

    Pg数据库日常维护操作指南

    本文主要用来记述pg数据库的相关操作和异常排查指南,继上一篇博客之后,异常的频繁更新,导致死亡元组指数级增长之后,空间占用也成倍增长,逻辑问题导致了数据库问题,但细想之下也发现,当pg在面对海量数据的更新删除之后,频繁的autovacuum会导致数据库大量的I/O,完了又会影响其他进程,就参数配置来看,还是有蛮多优化的空间的,毕竟空间和时间是两个相生相克的关系。就目前的默认的配置来看,手动标记60w数据执行vacuum标记清理花了6分钟,直接清空死亡元组也差不多这个时间,当空间膨胀到300g的时候数据量达到140w,vacuum已经有点吃不消了执行了半个小时也没有看到执行结束,至少在频繁更新的情况下,可见vacuum还是有他的局限性,就像官网提示的:Plain VACUUM may not be satisfactory when a table contains large numbers of dead row versions as a result of massive update or delete activity. 而且默认配置的的自动间隔是1分钟,我觉得这里面有很大的优化空间,尤其是海量数据频繁更新和删除的时候,当autovacuum的执行时间超过1分钟之后,就需要注意系统的死亡元组数量了,类似于当我打扫垃圾的速度低于产生垃圾的速度此时垃圾只会越来越多,当然这是在大数据量特定频繁更新和删除场景的情况下,结合相关的配置产生的一种思考。 需要注意的配置主要有autovacuum_max_workers可以根据cpu核心数配置,autovacuum_work_mem工作内存和vacuum_scale_factor规模因子,

    02
    领券