首页
学习
活动
专区
圈层
工具
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往

神经网络中的归一化

我们今天介绍一下神经网络中的归一化方法~ 之前学到的机器学习中的归一化是将数据缩放到特定范围内,以消除不同特征之间的量纲和取值范围差异。...这样做的好处包括降低数据的量纲差异,避免某些特征由于数值过大而对模型产生不成比例的影响,以及防止梯度爆炸或过拟合等问题。 神经网络中的归一化用于加速和稳定学习过程,避免梯度问题。 ...机器学习中的正则化分为L1和L2正则化,sklearn库中的Lasso类和Ridge类来实现L1正则化和L2正则化的线性回归模型。通过调整alpha参数,可以控制正则化的强度。...利用这些统计数据对批次数据进行归一化处理:这一步将数据转换为一个近似以0为中心,标准差为1的正态分布。...尺度变换和偏移:为了保持网络的表达能力,通过可学习的参数γ(尺度因子)和β(平移因子)对归一化后的数据进行缩放和位移。

14410
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    CV学习笔记(十):直方图

    在日常做CV的过程中,慢慢的就得去琢磨怎么使用一些直观的方式来展现数据,甚至来展现一些图片的区别。在Python中,我们经常会用到matplotlib这个2D绘图库来绘制图形。...在matplotlib能够绘制的种类很多,在这篇文章中,我会通过绘制直方图来去展现一些常用的绘图技巧和方式。写很长的东西不一定专业,只能帮助你对一个概念有一个快速入门,知识体系能稍微系统一点而已。...更直白一些就是说:图像的直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素。 直方图在CV里边应用的很广泛。...二:直方图绘制 前边说了,绘制直方图首先需要matplotlib这个库,这个库安装起来比较方便,在pycharm包管理哪里直接搜索安装也可以。...三:直方图的反向投影 反向投影是反映直方图模型在目标图像中的分布情况;简单点说就是用直方图模型去目标图像中寻找是否有相似的对象。

    97710

    CV学习笔记(十):直方图

    在日常做CV的过程中,慢慢的就得去琢磨怎么使用一些直观的方式来展现数据,甚至来展现一些图片的区别。在Python中,我们经常会用到matplotlib这个2D绘图库来绘制图形。...在matplotlib能够绘制的种类很多,在这篇文章中,我会通过绘制直方图来去展现一些常用的绘图技巧和方式。写很长的东西不一定专业,只能帮助你对一个概念有一个快速入门,知识体系能稍微系统一点而已。...更直白一些就是说:图像的直方图是用来表现图像中亮度分布的直方图,给出的是图像中某个亮度或者某个范围亮度下共有几个像素。 直方图在CV里边应用的很广泛。...在OpenCV中,我们使用的是cv2.equalizeHis()这个函数来实现直方图均衡化: 这个函数按照以下的步骤来实现均衡化: 也就是把直方图的每个灰度级进行归一化处理,求每种灰度的累积分布,得到一个映射的灰度映射表...反向投影是反映直方图模型在目标图像中的分布情况;简单点说就是用直方图模型去目标图像中寻找是否有相似的对象。

    1.2K00

    Python可视化库Matplotlib绘图入门详解

    Matplotlib是Python的绘图库,其中的pyplot包封装了很多画图的函数。 Matplotlib.pyplot 包含一系列类似 MATLAB 中绘图函数的相关函数。...每个 Matplotlib.pyplot 中的函数会对当前的图像进行一些修改,例如:产生新的图像,在图像中产生新的绘图区域,在绘图区域中画线,给绘图加上标记,等等…… Matplotlib.pyplot...直方图也可以被归一化以显示“相对”频率。然后,它显示了属于几个类别中的每个案例的比例,其高度等于1。 根据电影的评分绘制直方图: ?...arr: 需要计算直方图的一维数组 bins: 直方图的柱数,可选项,默认为10 normed: 是否将得到的直方图向量归一化。...’ 返回值 : n: 直方图向量,是否归一化由参数normed设定 bins: 返回各个bin的区间范围 patches: 返回每个bin里面包含的数据,是一个list ?

    2.8K21

    机器学习数学笔记|偏度与峰度及其 python 实现

    我们直接利用 表示期望应当明确 (2)公式中 是利用中的伪随机数生成的其均值用于表示期望 此时(1)公式中对事件赋予的权值默认为 1,即公式的本来面目为 计算偏度和峰度 def calc_stat...图形表示的是利用 numpy 随机数生成函数生成的随机数的统计分布,利用 matplotlib.pyplot.hist 绘制的直方图.即是出现数字的分布统计,并且是归一化到 0~1 区间后的结果....即横轴表示数字,纵轴表示在 1000 个随机数中横轴对应的数出现的百分比.若不使用归一化横轴表示数字(normed=False),纵轴表示出现的次数. 若不使用归一化--纵轴表示出现次数, ?...可选项,默认为10 normed: 是否将得到的直方图向量归一化。...‘stepfilled’ 返回值 : n: 直方图向量,是否归一化由参数normed设定 bins: 返回各个bin的区间范围 patches: 返回每个bin里面包含的数据,是一个list

    1.4K40

    深度学习中的组归一化(GroupNorm)

    BN 需要用到足够大的批大小(例如,每个工作站采用 32 的批量大小)。一个小批量会导致估算批统计不准确,减小 BN 的批大小会极大地增加模型错误率。加大批大小又会导致内存不够用。? 归一化的分类?...BN,LN,IN,GN从学术化上解释差异:BatchNorm:batch方向做归一化,算N*H*W的均值LayerNorm:channel方向做归一化,算C*H*W的均值InstanceNorm:一个channel...内做归一化,算H*W的均值GroupNorm:将channel方向分group,然后每个group内做归一化,算(C//G)*H*W的均值LN 和 IN 在视觉识别上的成功率都是很有限的,对于训练序列模型...所以,在视觉领域,BN用的比较多,GN就是为了改善BN的不足而来的。GN 把通道分为组,并计算每一组之内的均值和方差,以进行归一化。GN 的计算与批量大小无关,其精度也在各种批量大小下保持稳定。...怎么做在现有深度学习框架下可以轻松实现组归一化。?效果?

    5.7K10

    十五 直方图反向投影

    一、学习目标 了解了直方图反向投影的一般流程 了解2D直方图的使用 如有错误欢迎指出~ 二、了解直方图反向投影 2.1 了解2D直方图 需要对直方图进行反向投影,需要使用2D直方图。...2D直方图需要使用calcHist方法。calcHist方法在前两节中已经有了解,现在再来复习一下。首先我们查看calcHist方法的原型。...直方图反向投影可以在图像中找到我们感应区的部分,直方图反向投影将会输出模板图像中类似的部分,越亮的的部分则表示得越白。...我们需要完成这个操作首先得有一张需要查找的对象,随后需要一张图为查找区域。我们可以先对需要查找目标的图像创建一个直方图,随后进行归一化处理。归一化处理使用normalize方法。...方法进行归一化;归一化是将数据达到一种可进行对比的标准,但是保持了原有数据间的关系。

    49420

    Python opencv图像处理基础总结(三) 图像直方图 直方图应用 直方图反向投影

    反向投影 一、图像直方图 画直方图要用到 matplotlib 库 图像直方图是反映一个图像像素分布的统计表,其横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。...纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。...它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像元取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。...norm_type:归一化的类型 归一化类型 NORM_MINMAX:数组的数值被平移或缩放到一个指定的范围,线性归一化,一般较常用。...NORM_INF:归一化数组的C-范数(绝对值的最大值) NORM_L1:归一化数组的L1-范数(绝对值的和) NORM_L2:归一化数组的(欧几里德)L2-范数 cv2.calcBackProject

    84110

    Python opencv图像处理基础总结(三) 图像直方图 直方图应用 直方图反向投影

    文章目录 一、图像直方图 画直方图要用到matplotlib库 图像直方图是反映一个图像像素分布的统计表,其横坐标代表了图像像素的种类,可以是灰度的,也可以是彩色的。...纵坐标代表了每一种颜色值在图像中的像素总数或者占所有像素个数的百分比。图像是由像素构成,因为反映像素分布的直方图往往可以作为图像一个很重要的特征。...mask:表示掩膜图像,如果统计整幅图,那么为None;而如果要统计部分图的直方图,就得构造相应的掩膜来计算。 histSize:灰度级的个数,需要中括号,比如256。...它的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,从而扩展像元取值的动态范围,提高了对比度和灰度色调的变化,使图像更加清晰。...norm_type:归一化的类型 归一化类型 NORM_MINMAX:数组的数值被平移或缩放到一个指定的范围,线性归一化,一般较常用。

    4.2K41

    matplotlib.pyplot中的hist函数

    区分直方图与条形图: 条形图是用条形的长度表示各类别频数的多少,其宽度(表示类别)则是固定的; 直方图是用面积表示各组频数的多少,矩形的高度表示每一组的频数或频率,宽度则表示各组的组距,因此其高度与宽度均有意义...由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。...首先构造数据,这里注意构造的是一维数组可以使用pandas中的Series,如果是二维数组使用DataFrame。...,这里注意构造的是一维数组可以使用pandas中的Series,如果是二维数组使用DataFrame。...= data_m.sort_index()#给统计后的数据排序 print(data_m) #随后开始画直方图 import matplotlib.pyplot as plt plt.hist(data

    4.5K30

    深入探讨在Matplotlib中自定义颜色映射与标签的实用指南

    Matplotlib是Python中广泛使用的绘图库,其强大的功能和灵活性使其成为数据可视化的首选工具之一。在数据可视化中,颜色映射和标签是至关重要的元素,能够显著增强图表的可读性和美观度。...本文将深入探讨如何在Matplotlib中自定义颜色映射与标签,并提供详细的代码实例。1. 什么是颜色映射?颜色映射(Colormap)是一种将数值映射到颜色的函数。...在数据可视化中,颜色映射通常用于表示数据的大小、类别或其他特性。Matplotlib提供了丰富的内置颜色映射,但有时我们需要根据具体需求自定义颜色映射。2....接下来,我们生成了一组随机数据,并在热图中应用了自定义颜色映射。3. 自定义标签标签在数据可视化中同样重要,它们帮助观众理解图表中的数据。Matplotlib允许我们自定义轴标签、颜色条标签和图例。...结合matplotlib.widgets模块中的滑块,实现交互式的颜色映射调整。实际应用案例:在地理数据可视化中应用自定义颜色映射和标签,提升地图图表的直观性。

    32320

    Python绘制hist直方图使用手册

    频数分布直方图:在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频数,每个矩形的高代表对应的频数。...频率分布直方图:在统计数据时,按照频数分布表,在平面直角坐标系中,横轴标出每个组的端点,纵轴表示频率除以组距的值,每个矩形的高代表频率和组距的商。 频数:落在各组样本数据的个数。...组距:直方图中柱子的宽度,可自定义,也可用数据的最大值减去最小值再除以柱子的个数。...若为True,则绘制频率分布直方图,若为False,则绘制频数分布直方图。 weights:与x形状相同的权重数组。将x中的每个元素乘以对应权重值再计数。...如果normed或density取值为True,则会对权重进行归一化处理。这个参数可用于绘制已合并数据的直方图。 cumulative:布尔值,默认为False。

    4K11

    深度学习中的归一化技术全面总结

    在这篇文章中,我将使用类比和可视化的方式来回顾这些方法中,这将帮助您了解它们的产生的原因和思维过程。 为什么要归一化? 例如,我们现在用两个特征构建一个简单的神经网络模型。...在深度神经网络中,由于层数是固定的,因此很容易存储每个 BN 层的统计信息。然而在 RNN 中,输入和输出形状的长度不同。...batch(N) 中的每个示例都在 [C, H, W] 维度上进行了归一化。...上面的针对于激活的归一化方法我们基本上都听说过也经常会用到,下面我们来介绍针对权重的归一化方法。...总结 归一化是深度学习中的一个基本概念。它加快了计算速度并稳定了训练。多年来发展了许多不同的技术。

    1K10

    【DB笔试面试634】在Oracle中,什么是直方图(Histogram)?直方图的使用场合有哪些?

    ♣ 题目部分 在Oracle中,什么是直方图(Histogram)?直方图的使用场合有哪些? ♣ 答案部分 直方图是CBO中的一个重点,也是一个难点部分,在面试中常常被问到。...(一)直方图的意义 在Oracle数据库中,CBO会默认认为目标列的数据在其最小值(LOW_VALUE)和最大值(HIGH_VALUE)之间是均匀分布的,并且会按照这个均匀分布原则来计算对目标列施加WHERE...构造直方图最主要的原因就是帮助优化器在表中数据严重偏斜时做出更好的规划。例如,表中的某个列上,其中的某个值占据了数据行的80%(数据分布倾斜),相关的索引就可能无法帮助减少满足查询所需的I/O数量。...创建直方图可以让基于成本的优化器知道何时使用索引才最合适,或何时应该根据WHERE子句中的值返回表中80%的记录。...(二)直方图的使用场合 通常情况下在以下场合中建议使用直方图: (1)当WHERE子句引用了列值分布存在明显偏差的列时:当这种偏差相当明显时,以至于WHERE子句中的值将会使优化器选择不同的执行计划。

    1.6K50

    matplotlib 中的subplot的用法「建议收藏」

    一个figure对象包含了多个子图,可以使用subplot()函数来绘制子图:   (首先我没有想明白为啥会有这么多的内容来介绍这一个函数,后来知道了原来这个函数还真的挺多的内容)    言简意赅:...   首先,它的调用是这样子的:subplot(numbRow , numbCol ,plotNum ) or subplot(numbRow numbCol plotNum),对。...看清楚,可以不用逗号分开直接写在一起也是对的;    解释一下这是啥玩意:    numbRow是plot图的行数;numbCol是plot图的列数;plotNum是指第几行第几列的第几幅图 ;    ...上个图: 看到没,我写的一个椒盐噪声的图,然后subplot可以分个写,只不过我用了一个循环的形式了; 对了,还有一种形式差点忘记说了,如果是只有3副图或者只有5副图的单数该怎么办?...,语法都差不多;    import matplotlib.pyplot as plt import numpy as np def f(t): return np.exp(-t) * np.sin

    1.4K20

    【干货】计算机视觉实战系列04——用Python做图像处理

    这个变换函数的基本思想是对图像中像素个数多的灰度级进行展宽,而对图像中像素个数少的灰度进行压缩,即将一幅图像的灰度直方图变平,使变换后的图像中每个灰度值的分布概率都相同从而扩展像元取值的动态范围。...这个变换函数通常是图像中像素值的累积分布函数(cumulativate distribution function,简写为cdf,将像素值的范围映射到目标范围的归一化操作),累积函数和概率论中的累积分布函数类似...在对图像做进一步处理之前,直方图均衡化通常是对图像灰度值进行归一化的一个非常好的方法,并且可以增强图像的对比度。...我们用r和s分别表示原图像灰度级和经直方图均衡化之后的图像灰度级,为了方便我们讨论,我们首先要做的事便是对s和r的归一化处理,使得: 对于一幅给定的图像,归一化之后灰度级分布在范围内。...具体的代码如下: import numpy as np from PIL import Image import matplotlib.pyplot as plt import matplotlib.cm

    2.3K70
    领券