首页
学习
活动
专区
工具
TVP
发布
精选内容/技术社群/优惠产品,尽在小程序
立即前往
  • 您找到你想要的搜索结果了吗?
    是的
    没有找到

    从Seq2seq到Attention模型到Self Attention(一)

    近一两年,注意力模型(Attention Model)是深度学习领域最受瞩目的新星,用来处理与序列相关的数据,特别是2017年Google提出后,模型成效、复杂度又取得了更大的进展。以金融业为例,客户的行为代表一连串的序列,但要从串行化的客户历程数据去萃取信息是非常困难的,如果能够将self-attention的概念应用在客户历程并拆解分析,就能探索客户潜在行为背后无限的商机。然而,笔者从Attention model读到self attention时,遇到不少障碍,其中很大部分是后者在论文提出的概念,鲜少有文章解释如何和前者做关联,笔者希望藉由这系列文,解释在机器翻译的领域中,是如何从Seq2seq演进至Attention model再至self attention,使读者在理解Attention机制不再这么困难。

    04

    LSTM还没「死」!

    长短期记忆(Long Short-Term Memory,LSTM)是一种时间循环神经网络(RNN),论文首次发表于1997年。由于独特的设计结构,LSTM适合于处理和预测时间序列中间隔和延迟非常长的重要事件。 在过去几十年里,LSTM发展如何了? 密切关注机器学习的研究者,最近几年他们见证了科学领域前所未有的革命性进步。这种进步就像20世纪初,爱因斯坦的论文成为量子力学的基础一样。只是这一次,奇迹发生在AlexNet论文的推出,该论文一作为Alex Krizhevsky,是大名鼎鼎Hinton的优秀学生代表之一。AlexNet参加了2012年9月30日举行的ImageNet大规模视觉识别挑战赛,达到最低的15.3%的Top-5错误率,比第二名低10.8个百分点。这一结果重新燃起了人们对机器学习(后来转变为深度学习)的兴趣。 我们很难评估每次技术突破:在一项新技术被引入并开始普及之前,另一项技术可能变得更强大、更快或更便宜。技术的突破创造了如此多的炒作,吸引了许多新人,他们往往热情很高,但经验很少。 深度学习领域中一个被误解的突破就是循环神经网络(Recurrent neural network:RNN)家族。如果你用谷歌搜索诸如「LSTMs are dead」「RNNs have died」短语你会发现,搜索出来的结果大部分是不正确的或者结果太片面。 本文中数据科学家Nikos Kafritsas撰文《Deep Learning: No, LSTMs Are Not Dead!》,文中强调循环网络仍然是非常有用的,可应用于许多实际场景。此外,本文不只是讨论LSTM和Transformer,文中还介绍了数据科学中无偏评估这一概念。 以下是原文内容,全篇以第一人称讲述。

    01
    领券