我们就继续以此为基础,用保姆级的粒度一步一步操作,来讨论一下字符设备驱动程序的编写方法。
上篇文章(【i.MX6ULL】驱动开发1——字符设备开发模板)介绍了字符设备的开发模板,但那是一种旧版本的驱动开发模式,设备驱动需要手动分配设备号再使用 register_chrdev进行注册,加载成功以后还需要手动使用mknod命令创建设备节点,比较麻烦。
上一篇文章学习了字符设备的注册,操作过的小伙伴都知道上一篇文章中测试驱动时是通过手动创建设备节点的,现在开始学习怎么自动挂载设备节点和设备树信息的获取,这篇文章中的源码将会是我以后编写字符驱动的模板。
转载请标明原址:linux驱动最新面试题(面试题整理,含答案)_不忘初心-CSDN博客_linux驱动面试题
要理解这些接口,记住一句话:APP通过I2C Controller与I2C Device传输数据。
在上一篇文章中Linux驱动实践:你知道【字符设备驱动程序】的两种写法吗?我们说过:字符设备的驱动程序,有两套不同的API函数,并且在文中详细演示了利用旧的API函数来编写驱动程序。
记录一下这两天用正点原子开发板学petalinux的过程,众所周知,ZYNQ可以跑逻辑的FPGA,也可以跑裸机的SDK代码,还能跑个linux系统。在SDK开发中,只是在搭好的FPGA上跑一些简单的c代码,还没有安装上一个系统。
前面Linux专题中关于Linux下系统编程总结了17篇博文,主要是为了提高Linux下的C编程应用能力,熟悉Linux编程应用环境,从此篇博文起开始Linux驱动的总结,后面计划加一些综合实践项目练习。
大家好,我是道哥,今天我为大伙儿解说的技术知识点是:【中断程序如何发送信号给应用层】。
该文章介绍了如何通过Linux内核技术实现一个基于ARM SoC的通用驱动程序,该驱动程序可以支持多种外设如LED、按键、喇叭等。首先介绍了Linux内核的树状结构和通用驱动程序涉及到的关键组件,如驱动程序加载、设备管理、中断处理、队列和调度等。然后详细讲解了如何创建一个通用的驱动程序框架,该框架可以支持多个外设,如LED、按键、喇叭等。最后,介绍了如何通过修改测试程序来点亮LED,并通过一个简单的示例来展示通用驱动程序的效果。
也就是说,在应用程序中,可以通过open,write,read等函数来操作底层的驱动。
在前几篇文章中,我们一块讨论了:在 Linux 系统中,编写字符设备驱动程序的基本框架,主要是从代码流程和 API 函数这两方面触发。
实际项目过程中应用层需要操作内核中GPIO, 除了应用层直接通过export方式操作,具体操作方法[Linux驱动炼成记] 02-用户空间控制GPIO, 还可以通过sysfs设备节点方式操作
上一篇分享的:从单片机工程师的角度看嵌入式Linux中有简单提到Linux的三大类驱动:
本文通过在荔枝派上实现一个 hello 驱动程序,其目的是深入的了解加载驱动程序的运作过程。
devfs(设备文件系统)是由Linux2.4内核引入的,它的出现主要使得设备驱动程序能够自主管理自己的设备文件。具体来说,devfs具有如下优点:
杂项设备(misc device)也是在嵌入式系统中用得比较多的一种设备驱动。
Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离。在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写。
Linux内核从3.x开始引入设备树的概念,用于实现驱动代码与设备信息相分离。在设备树出现以前,所有关于设备的具体信息都要写在驱动里,一旦外围设备变化,驱动代码就要重写。引入了设备树之后,驱动代码只负责处理驱动的逻辑,而关于设备的具体信息存放到设备树文件中,这样,如果只是硬件接口信息的变化而没有驱动逻辑的变化,驱动开发者只需要修改设备树文件信息,不需要改写驱动代码。比如在ARM Linux内,一个.dts(device tree source)文件对应一个ARM的machine,一般放置在内核的"arch/arm/boot/dts/"目录内,比如exynos4412参考板的板级设备树文件就是"arch/arm/boot/dts/exynos4412-origen.dts"。这个文件可以通过$make dtbs命令编译成二进制的.dtb文件供内核驱动使用。
转载请注明原文地址:http://wiki.100ask.org/Linux_devicetree
本文介绍了如何通过驱动程序实现按键中断,并分析了中断方式的优缺点。作者首先介绍了按键中断的基本原理和实现方法,然后通过实例详细阐述了中断方式的驱动程序设计思路和步骤。最后,作者总结了驱动程序的设计和实现过程中需要注意的问题,并提供了相应的解决方案。
大家好,我是道哥,今天我为大伙儿解说的技术知识点是:【驱动层中,如何发送信号给应用程序】。
该文章介绍了如何通过在Linux系统中配置mdev.conf文件来实现U盘自动挂载。首先,使用`grep`命令过滤出需要添加的设备节点,然后使用`sed`命令将设备节点添加到mdev.conf文件中。最后,使用`cat`命令查看已添加的设备节点。通过这种方式,可以在Linux系统中实现U盘自动挂载,从而方便用户使用。
发布者:全栈程序员栈长,转载请注明出处:https://javaforall.cn/154532.html原文链接:https://javaforall.cn
在应用到linux的设备(特别是手机)中,大部分硬件设备与主芯片都是通过iic通讯的,譬如TP、加速度传感器、温湿度传感器等等。记录一次自己调试linux开发板iic器件(ap3216c光敏设备)。
驱动结构体填充完毕后,需要注册到内核之中,其中有三种方法来注册设备驱动:
misc(杂项)设备,由于硬件设备的多样化,有一些设备不知道如何归类,所以linux将这些不知道怎么归类的设备归类为misc设备。例如led、watchdog、beep、adc等都可以归纳为misc设备。
KMD框架通过V4L2标准方法在系统中创建设备节点,将控制接口直接暴露给UMD CSL进行访问,而其内部主要定义了一系列核心模块,包括CRM(Camera Request Manager):
资料中,难免会有一些错误,有任何问题,都可以在github向我提交issue。文中的勘误,我都会更新在github中。点击阅读原文可以直达github。
获取到int类型的gpio口后,就可以使用linux/gpio.h里的gpio口操作函数:
设备总线驱动模型:http://blog.csdn.net/lizuobin2/article/details/51570196
部分硬件设计中需要CPU完成对电路寄存器的配置,为了完成Zedboard对FPGA上部分寄存器的配置功能,可以在PS单元(处理器系统)上运行裸机程序(无操作系统支持)完成和PL单元(FPGA部分)的数据交互功能,此时PS单元更像单片机开发;另一种方法是PS单元运行Linux操作系统,通过驱动程序和应用程序完成对硬件寄存器的读写操作,并且Linux有着完整的网络协议栈支持,后续可拓展性更强,可以更好的发挥ZYNQ这种异构架构芯片的性能。主要分为两部分,分别阐述Zedboard中FPGA和处理器互联总线与硬件设计和Zedboard处理器系统上嵌入式Linux的移植与通过驱动和应用程序简单配置FPGA寄存器的实现。上次介绍了没有操作系统下的驱动和应用程序开发,本文介绍带操作系统的驱动和应用程序开发。
之前的几篇文章(从i.MX6ULL嵌入式Linux开发1-uboot移植初探起),介绍了嵌入式了Linux的系统移植(uboot、内核与根文件系统)以及使用MfgTool工具将系统烧写到板子的EMMC中。
Linux驱动分为字符设备驱动、块设备驱动和网络设备驱动,而字符设备又包括很多种,内核使用主设备号来区分各个字符设备驱动,在include/linux/major.h文件中已经预先定义好了各类字符设备的主设备号,但是即便如此,仍然存在着大量字符设备无法准确归类,对于这些设备,内核提供了一种Misc(杂项)设备来安放它们的去处。
参考地址 http://blog.csdn.net/green1900/article/details/45646095 http://www.cnblogs.com/xiaojiang1025/p/6131381.html http://blog.csdn.net/21cnbao/article/details/8457546
在Linux设备驱动之字符设备(一)中学习了设备号的构成,设备号的申请与释放。在Linux设备驱动之字符设备(二)中学习了如何创建一个字符设备,初始化,已经注册到系统中和最后释放该字符设备。
资料下载 coding无法使用浏览器打开,必须用git工具下载: git clone https://e.coding.net/weidongshan/linux/doc_and_source_for_drivers.git 视频观看 百问网驱动大全 Input子系统框架详解 参考资料: Linux 5.x内核文档 Documentation\input\input-programming.rst Documentation\input\event-codes.rst Linux 4.x内核文档
如果将一个设备连接到Linux系统时,通常需要一个设备驱动程序才能正常工作。你可以通过设备文件或设备节点与设备驱动程序交互,这些是看起来像普通文件的特殊文件。由于这些设备文件就像普通文件一样,你可以使用ls、cat等程序与它们交互。这些设备文件一般存放在/dev目录下。继续并在你的系统上通过命令ls /dev查看/dev目录,你将看到系统上有大量的设备文件。
linux-4.4内核的power相关的驱动位置:linux-4.4\drivers\power
上篇文章(【i.MX6ULL】驱动开发4--点亮LED(寄存器版))介绍了在驱动程序中,直接操作寄存器了点亮LED。本篇,介绍另外一种点亮LED的方式——设备树,该方式的本质也是操作寄存器,只是寄存器的相关信息放在了设备树中,配置寄存器时需要使用OF函数从设备树中读取处寄存器数据后再进行配置。
设备树(Device Tree),将这个词分开就是“设备”和“树”,描述设备设备树的文件叫做DTS(Device Tree Source),这个DTS文件采用了树形结构来描述板机设备,也就是开发板信息,比如CPU数量、内存基地址、IIC接口上接了那些设备、SPI接口上接了那些设备等。如最开始的图片所示! 在图片中,树的主干就是系统总线,IIC控制器、SPI控制器等都是接到系统主线的分支上的。通过DTS这个文件描述设备信息是有相关的语法规则的,并且在Linux内核中只有3.x版本以后的才支持设备树。
参考文档: a. 内核 Documentation\devicetree\bindings\Pinctrl\ 目录下: Pinctrl-bindings.txt
如下图,开源鸿蒙系统驱动框架HDF在内核中的实现,可以分为向用户层提供设备服务的管理模块(Manager),和实际管理硬件的Host模块。
本章的目的是编写一个完整的字符设备驱动,我们开发一个字符驱动是因为这一类适合大部分简单硬件设备,字符驱动也比块驱动易于理解。
查看 V3S 原理图,查看 RGB LED对应的引脚 PG0 -> green LED PG1 -> blue LED PG2 -> red LED
① 实例化platform_driver结构体probe成员 ② 实例化platform_driver结构体remove成员 ③ 选择一种方式匹配(设备树,ACPI,名字,ID四选一)
根据当前系统的版本,确定对应的路径: /usr/src/linux-headers-5.3.0-40
本文基于Linux kernel 5.15版本进行说明,旨在解析Linux设备树覆盖(Device Tree Overlay, DTO)的工作原理及其应用场景。
I2C(Inter-Integrated Circuit BUS)是I2C BUS简称,中文为集成电路总线,是目前应用最广泛的总线之一。和IMX6ULL有些相关的是,刚好该总线是NXP前身的PHILIPS设计。
就是说,我们会 chroot 进入之前准备好的临时迷你 Linux 系统,做一些最后的准备工作,然后就开始安装软件包。
领取专属 10元无门槛券
手把手带您无忧上云